Дано:ABCD - ромб.AB = 5 см.BD = 6 см.OK ⊥ ABCD.Найти KA, KB, KC, KD. Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см. Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.
Пусть углы при осн.равны-х ,тогда тупой угол равен 4х ,медиана в равноб.треуг так же явл высотой и биссектрисой ,получается ,что треуг (который получается при делении большего высотой ,т.есть любой из них, они оба равны ) прямоуг. высота перпен.осн. значит один из углов равен 90град. следовательно на остальные 2 так же приходится 90 град .значит х+2х =90 ,тогда х=30 гдад. теперь по свойству .катеп (т.есть (медиана =а) лежащий против угла в 30 град равен половине гипотинузы (боковой стороны треуг ) значит боковая сторона=2а
Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см.
Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.