В острый угол вписана окружность радиуса 1,3см.Если расстояние между точками касания равно2,4 ,то длина отрезка от вешины угла до точки касания равна 5,2 3,12 4,42 3,9
Рассмотрим только один случай из трех . ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности). Из подобия треугольников ODL и CAH получаем DO/LO = AC/CH = 1/sin(BAC) DO=r/sin(BAC) Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c) Аналогично OE/OG=AC/CF=1/sin(ACB) OE=r/sin(ACB) OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c) Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
ABC-треугольник , опустим высоту CH на сторону AB и AF на сторону BC , центр вписанной окружности лежит в точке пересечения биссектрис, положим что DE || AC опустим перпендикуляры OL=r и OG=r на стороны AB и BC соответственно (r-радиус вписанной окружности).
Из подобия треугольников ODL и CAH получаем
DO/LO = AC/CH = 1/sin(BAC)
DO=r/sin(BAC)
Но r=S/p = AB*AC*sinA/(AB+AC+BC) значит
DO=AB*AC/(AB+AC+BC) = b*c/(a+b+c)
Аналогично
OE/OG=AC/CF=1/sin(ACB)
OE=r/sin(ACB)
OE=AC*BC/(AC+BC+AB) = a*b/(a+b+c)
Значит DE=DO+OE=b(a+c)/(b+a+c)
Остальные так же, отрезок параллельный AB || c(a+b)/(a+b+c), BC || a(b+c)/(a+b+c)
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты).
Как это получается?
Объяснение: Диагональ ВD делит параллелограмм площадью 42 ед. на два равных треугольника. Площадь каждого 42:2=21 ед.
Ѕ ∆ АРD = 16 ед (дано), => Ѕ ∆ РВD=21-16=5 (ед).
Треугольники АРD и РВD имеют общую высоту DH. Соответственно:
S(ADP)=AP•DH:2
S(PBD)=PB•DH:2 => S(ADP):S(PBD)=(AP•DH:2):(PB•DH:2) = АР:РВ =>
АР:РВ=S(ADP):S(PBD)=16:5 (см. рисунок приложения).