в параллелограмме MKNZ диагонали пересекаются в точке О найдите угол образовавшийся в результате пересечения если диагональ делит турой угол параллелограмма на 104 и 16
Поскольку расстояние между точками не имеет значения, а важны только углы, рассмотрим окружность.
Первая точка О - центр окружности. Разместим 3 точки на окружности так, чтобы радиусы образовали тупые углы. Четвертую точку на окружности с соблюдением тех же условий разместить не удастся, так как полный угол составляет 360°, а если его разделить на 4 угла, то только 3 могут быть тупыми, а четвертый - обязательно острый (в крайнем случае - все прямые).
Но и при таком расположении точек А, В и С на окружности каждый вписанный угол АВС, ВАС и АСВ будет острым, так как вписанный равен половине центрального:
180° > ∠AOB > 90°
∠ACB = 1/2 ∠AOB, ⇒ 90° > ∠ACB > 45°
Т.е. даже 4 точки разместить так, чтобы любые три из них были вершинами тупоугольного треугольника нельзя.
Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см
Поскольку расстояние между точками не имеет значения, а важны только углы, рассмотрим окружность.
Первая точка О - центр окружности. Разместим 3 точки на окружности так, чтобы радиусы образовали тупые углы. Четвертую точку на окружности с соблюдением тех же условий разместить не удастся, так как полный угол составляет 360°, а если его разделить на 4 угла, то только 3 могут быть тупыми, а четвертый - обязательно острый (в крайнем случае - все прямые).
Но и при таком расположении точек А, В и С на окружности каждый вписанный угол АВС, ВАС и АСВ будет острым, так как вписанный равен половине центрального:
180° > ∠AOB > 90°
∠ACB = 1/2 ∠AOB, ⇒ 90° > ∠ACB > 45°
Т.е. даже 4 точки разместить так, чтобы любые три из них были вершинами тупоугольного треугольника нельзя.
Примем коэффициент отношения AF:FD=a. Тогда AF=a, FD=5a. Их сумма 6а=18 см, ⇒ а=18:6=3 см. Отрезок АF=3 см, отрезок FD=5•3=15 см АВСD - параллелограмм. ВС║AD, CF – секущая. ∠ВСF=∠СFD как накрестлежащие. Но ∠FCD=∠BCF (СF – биссектриса) ⇒ ∠CFD=∠FCD . Углы при основании FC треугольника FDC равны, следовательно, он равнобедренный и CD=FD=15 см ( свойство). Запомним: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Противоположные стороны параллелограмма равны, ⇒ АВ=CD=15 см. Периметр =сумма всех сторон АВСD. Р=2•(18+15)=66 см