В параллелограмме сторона и большая диагональ равны соответственно 3 и корень из 37. Найдите периметр параллелограмма, если его острый угол равен 60 градусов
По теореме косинусов квадрат большей диагонали равен сумме квадратов смежных сторон без удвоенного произведения этих сторон на косинус 120 градусов, т.к. сумма углов, прилежащей к стороне 3, равна 180 градусов. т.е. тупой угол между смежными сторонами равен 120°, пусть неизвестная сторона, смежная стороне 3, равна х, тогда, учитав, что косинус 120 градусов равен -0.5, получим
37=9+х²-2*3*х*(-0.5)
х²+3х-28=0
х=(-3±√(9+112))/2=(-3±11)/2; х=-7; ∅, сторона не бывает отрицательной. Значит х=4, тогда периметр 2*(3+4)=14
ответ: Асса
Объяснение:
По теореме косинусов квадрат большей диагонали равен сумме квадратов смежных сторон без удвоенного произведения этих сторон на косинус 120 градусов, т.к. сумма углов, прилежащей к стороне 3, равна 180 градусов. т.е. тупой угол между смежными сторонами равен 120°, пусть неизвестная сторона, смежная стороне 3, равна х, тогда, учитав, что косинус 120 градусов равен -0.5, получим
37=9+х²-2*3*х*(-0.5)
х²+3х-28=0
х=(-3±√(9+112))/2=(-3±11)/2; х=-7; ∅, сторона не бывает отрицательной. Значит х=4, тогда периметр 2*(3+4)=14
ответ 14