В правильной треугольной пирамиде боковое ребро образует с плоскостью основания угол 60°, а радиус окружности, описанной около основания, равен 2корня из3 см. Найдите площадь боковой по- верхности пирамиды. напишите решение подробно
ответ:Если мы соединим точки К и L,a затем точки М и N,то получатся ещё два треугольника LPK и МРN
Рассмотрим их
КР=РМ. LP==PN потому что это стороны треугольников РКN и LPM,которые равны по условию задачи
И так как КМ и LN два перпендикулярных отрезка(тоже по условию),то и углы между двумя сторонами тоже равны и равны по 90 градусов каждый.
Исходя из этого можно утверждать,что треугольники LPK и MPN равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними второго треугольника,то Треугольники равны между собой.Исходя из этого-LK=MN=33,9 cм
ответ:Если мы соединим точки К и L,a затем точки М и N,то получатся ещё два треугольника LPK и МРN
Рассмотрим их
КР=РМ. LP==PN потому что это стороны треугольников РКN и LPM,которые равны по условию задачи
И так как КМ и LN два перпендикулярных отрезка(тоже по условию),то и углы между двумя сторонами тоже равны и равны по 90 градусов каждый.
Исходя из этого можно утверждать,что треугольники LPK и MPN равны между собой по первому признаку равенства треугольников-если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними второго треугольника,то Треугольники равны между собой.Исходя из этого-LK=MN=33,9 cм
Объяснение:
Объяснение:
Дано: отрезок АВ, прямая а, а⊥АВ, АО=ОВ. Доказать что АС=ВС.
Возьмем на прямой а точку С, построим ΔАВС.
АО=ОВ, ∠АОС=∠ВОС=90° по условию, СО - общая сторона, значит
ΔАОС=ΔВОС и тогда АС=ВС. Доказано.