В прямоугольной трапеции ABCD с основаниями AD и BC диагональ АС является биссектрисой угла А, равного 45°. Найдите длину диагонали BD, если меньшее основание трапеции равно 11 корень из 2. Запишите решение и ответ.
058: Пусть cosx=t, где t принадлежит [-1;1], тогда получим квадратное уравнение: t^2 + |t| - 2=0. Из-за модуля придется рассматривать 2 случая:
t>=0 t<0
t^2 + t - 2=0 t^2 - t - 2=0
t1= -2-не подходит, т.к. t1= 2-не подходит, т.к.
не принадлежит [-1;1] не принадлежит [-1;1]
t2= 1 t2= -1
cosx=1,а на промежутке [0;pi] cosx= -1,а на промежутке [0;pi]
х=0 х=pi
ответ: 0+pi=pi=3
054: я к сожалению не могу предоставить рисунок,т.к. у меня на данный момент нет средств,поэтому придется поверить на слово. Там, на единичной окружности получается 1,5 оборота, которая и захватывает 6 корней на данном промежутке. После приведения получатся такое выражение:
-sqrt(3) * sinx = (-2)* sinx * sinx
-sqrt(3) * sinx + 2sin^2 (x)=0
sinx * (2sinx - sqrt(3)) =0
sinx=0 sinx=sqrt(3)/2
x=pi*n x=pi/3+2pin
x=2/3+2pin
ответ: на данном промежутке - 6 корней.
053: 4x+20=60 + pi*n
4x=40 + pi*n
x= 10+pi*n
ответ: при n=0, наим. положительный корень = 10
062: (pi*(4x - 5))/4 = -pi/4 + pin
4x - 5 = -1 + 4n
4x=4 + 4n
x= 1 + n
ответ: наибольший отриц. корень будет при n= -2 это х= -1
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠А = 90 - 45 = 45°
Так как ∠А = ∠М = 45° => ∆АВМ - равнобедренный.
=> АВ = ВМ = 22, по свойству.
ВМ - расстояние от M до АВ.
ответ: 22.
Задача #3.Решение (1 часть):
Проведём перпендикуляр BF от В до АС (он же высота)
Получился ∆BFC - прямоугольный.
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> BF = 12 ÷ 2 = 6 см.
ответ: 6 см (расстояние от В до АС).
Решение (2 часть):
При пересечении двух параллельных прямых секущей накрест лежащие углы равны.
Так как m || BC => ∠МАС = ∠С = 30°, как накрест лежащие.
Проведём перпендикуляр от m к точке С
Получился ∆МСА - прямоугольный.
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> МС = 20 ÷ 2 = 10 см.
ответ: 10 см (расстояние от прямой m до прямой ВС).
Объяснение:
058: Пусть cosx=t, где t принадлежит [-1;1], тогда получим квадратное уравнение: t^2 + |t| - 2=0. Из-за модуля придется рассматривать 2 случая:
t>=0 t<0
t^2 + t - 2=0 t^2 - t - 2=0
t1= -2-не подходит, т.к. t1= 2-не подходит, т.к.
не принадлежит [-1;1] не принадлежит [-1;1]
t2= 1 t2= -1
cosx=1,а на промежутке [0;pi] cosx= -1,а на промежутке [0;pi]
х=0 х=pi
ответ: 0+pi=pi=3
054: я к сожалению не могу предоставить рисунок,т.к. у меня на данный момент нет средств,поэтому придется поверить на слово. Там, на единичной окружности получается 1,5 оборота, которая и захватывает 6 корней на данном промежутке. После приведения получатся такое выражение:
-sqrt(3) * sinx = (-2)* sinx * sinx
-sqrt(3) * sinx + 2sin^2 (x)=0
sinx * (2sinx - sqrt(3)) =0
sinx=0 sinx=sqrt(3)/2
x=pi*n x=pi/3+2pin
x=2/3+2pin
ответ: на данном промежутке - 6 корней.
053: 4x+20=60 + pi*n
4x=40 + pi*n
x= 10+pi*n
ответ: при n=0, наим. положительный корень = 10
062: (pi*(4x - 5))/4 = -pi/4 + pin
4x - 5 = -1 + 4n
4x=4 + 4n
x= 1 + n
ответ: наибольший отриц. корень будет при n= -2 это х= -1
063: Здесь будут 2 корня, т.к. это синус
(pi*(x - 3))/4 = -pi/4 + 2pin (pi*(x - 3))/4 = -3/4pi + 2pin
x - 3 = -1 +8n x - 3 = -3+8n
x= 2 + 8n x= 8n
ответ: при n=0 наименьшим положительным корнем будет х = 2