В прямоугольном ΔABC (угол С=90°) медианы пересекаются в точке О. Найдите гипотенузу ΔABC, если BC=12 см, OB=10 см.В трапеции ABCD (угол A=90°). BС=6, AС=6√2. DE – высота треугольника ΔACD, а tg ACD=2. Найдите CE.
1) Я эту букву по середине не понял так что будет O
ABO = DOC, по двум сторонам и углу между ними, стороны равны по условию, а углы вертикальные;
4) BCD = ABD, по двум сторонам и углу между ними, одна сторона и угол равны по условию, а сторона BD общая;
7) NPK = MNK, по трём сторонам, две равны по условию, третья общая;
10) Треугольник ABC равнобедренный, это следует из условия, обозначим точку пересечения отрезков AD и BE как точку O. Треугольник ABO равнобедренный так как уголки данные из задания равны то и большие углы CBA и CAB равны то есть и углы OBA и OAB равны. Из этого следует что стороны AO и BO равны.
BDO и AOE равны по стороне и двум углам прилежащим к ней, один угол равен по условию, второй вертикальный, а сторону мы доказали.
кут E=120°
кут F=120°
кут N=60°
кут F=60°
Объяснение:
эта трапеция равнобедренная (NE=FM), это можно сказать ещё с условия задачи
точкой O я пометила точку пересечения EM и NF
они являются диагонали, бисектрисами и и высотами
кут NOM равен 120° за условием, значит кут EOF тоже равен 120° (как вертикальные куты), а кут EON равен 60°
рассмотрим треугольник NOM
в нём кут N=M=(180°-120°)/2=30°
рассмотрим треугольник EOF
в нём кут E=куту F=(180°-120°)/2=30°
рассмотрим треугольник NEO
в треугольнику NEO кут E=90°
значит треугольник прямоугольный
кут O=60°
кут N=30°
продолжим рассматривать трапецию
в ней кут N=куту M=кут ENO+кут ONM=30°+30°=60°
кут E=куту F=кут NEO+кут OEF=90°+30°=120°
1) Я эту букву по середине не понял так что будет O
ABO = DOC, по двум сторонам и углу между ними, стороны равны по условию, а углы вертикальные;
4) BCD = ABD, по двум сторонам и углу между ними, одна сторона и угол равны по условию, а сторона BD общая;
7) NPK = MNK, по трём сторонам, две равны по условию, третья общая;
10) Треугольник ABC равнобедренный, это следует из условия, обозначим точку пересечения отрезков AD и BE как точку O. Треугольник ABO равнобедренный так как уголки данные из задания равны то и большие углы CBA и CAB равны то есть и углы OBA и OAB равны. Из этого следует что стороны AO и BO равны.
BDO и AOE равны по стороне и двум углам прилежащим к ней, один угол равен по условию, второй вертикальный, а сторону мы доказали.
Объяснение: