В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
kostan555ua
kostan555ua
23.03.2021 09:14 •  Геометрия

В прямоугольном параллелепипеде ABCDA1B1C1D1; ∠BDA=60°; DD1=15см; AB=2см.

Вычисли объём.

Показать ответ
Ответ:
lol1046
lol1046
07.08.2020 20:40
Х-1 часть;так как у нас имеется соотношение чисел,то исспользуем х-ы.Запишем формулу периметра треугольника :
3х+4х+6х=130;130=13х;х=10;
Подставляем значение х  и получаем треугольник со сторонами 30см,40см и 60см.
Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами  которого являются  середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а  это соответствует числам:15см,20см ,30см
0,0(0 оценок)
Ответ:
Amirmusta
Amirmusta
14.10.2020 14:45

Призма

Призмой называется многогранник, две грани которого n-угольники, а остальные n граней — параллелограммы.Боковые ребра призмы равны и параллельны.

Перпендикуляр, проведенный из какой-либо точки одного основания к плоскости другого основания, называется высотой призмы. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы.Поверхность призмы состоит из оснований и боковой поверхности призмы. Боковая поверхность призмы состоит из параллелограммов.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой. В противном случае призма называется наклонной.

У прямой призмы боковые грани – прямоугольники.

Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной, если она прямая, и ее основания — правильные многоугольники

Площадь поверхности и объём призмы

Пусть H — высота призмы, — боковое ребро призмы, — периметр основания призмы, площадь основания призмы, — площадь боковой поверхности призмы, — площадь полной поверхности призмы, - объем призмы, — периметр перпендикулярного сечения призмы, — площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

Для прямой призмы, у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:

Параллелепипед

Параллелепипедом называется призма, основанием которой является параллелограмм.

Параллелограммы, из которых составлен параллелепипед, называются его гранями, их

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота