Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
8. Припустим, что k i l паралельны, а m секущая. Тогда тут будут действовать теоремы о внутрених и внешних углах с секущей
Вертикальные угол, с углом 36° будет 36°
Модем видет, что здесь действует теорема о внутреннем и внешнем углах сума которых ровна 180°. По этому k||l
9. Рассмотрим треугольник АВС
АВ=СА
то есть треугольник АВС равнобедренный
с этого модем скать, что ВС основа, угол В = углу С
На рисунку 9 видим, что дано два угла и они равны
Соответственно угол С будет равен тем двом углам, так как они равны и один из рих равен углу С
Тут мы мы можем предположить, что ВС может быть секущей и тогда внутренние разносотороние куты должны будут быть равны если a||b.
Соответственно a||b
Так как, по условию, призма правильная, то в ее основании лежит правильный треугольник, тогда АВ = ВС = АС. Пусть сторона треугольника будет а см, а высота призмы h см.
Так как в основании окружность описана вокруг правильного треугольника, то ее радиус будет равен:
R = а / √3 см, тогда а = R * √3 см.
Площадь основания призмы будет равна: Sосн1 = а2 * √3 / 4.
Тогда объем призмы будет равен: Vпр = h * а2 * √3 / 4 = h * (R * √3)2 * √3 / 4 = h * R2 * 3 * √3 / 4.
R2 * h = 4 * Vпр / 3 * √3 = 4 * √3 * Vпр / 9.
Объем цилиндра равен:
Vцил = п * R2 * h = п * 4 * √3 * Vпр / 9.
ответ: Объем цилиндра равен п * 4 * √3 * Vпр / 9 см3.