ΔABM - прямоугольный (BM⊥AD). В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Катет, лежащий против угла в 30°, это АМ, а гипотенуза в ΔАВМ - это АВ, т.е. АВ=2АМ=2*6см=12см. Также в прямоугольном треугольнике сумма острых углов равна 90°. Поэтому ∠А=90-30=60°.
Поскольку ABCD - ромб, то у него все стороны равны, т.е. AB=BC=CD=AD=12см. Т.е. ΔABD является равнобедренным (AB=AD). ∠ABD=∠ADB=(180-∠BAD)/2=(180-60)/2=60°. Т.е. ΔABD равносторонний. Значит, BD=AB=12см.
12см
Объяснение:
ΔABM - прямоугольный (BM⊥AD). В прямоугольном треугольнике катет, лежащий против угла в 30° равен половине гипотенузы. Катет, лежащий против угла в 30°, это АМ, а гипотенуза в ΔАВМ - это АВ, т.е. АВ=2АМ=2*6см=12см. Также в прямоугольном треугольнике сумма острых углов равна 90°. Поэтому ∠А=90-30=60°.
Поскольку ABCD - ромб, то у него все стороны равны, т.е. AB=BC=CD=AD=12см. Т.е. ΔABD является равнобедренным (AB=AD). ∠ABD=∠ADB=(180-∠BAD)/2=(180-60)/2=60°. Т.е. ΔABD равносторонний. Значит, BD=AB=12см.
Дано:
ΔАВС
окр. (О; ОС)
дуга ВС : дуга АС : дуга АВ = 3 : 7 : 8
ВС = 20
Найти: ОС.
Пусть k - одна часть, тогда дуга ВС = 3k, дуга АС = 7k, дуга АВ = 8k. Т.к. в окружности 360°, то составим и решим уравнение:
3k + 7k + 8k = 360;
18k = 360;
k = 20.
Найдем дугу ВС: дуга ВС = 3 * 20 = 60°.
∠ВОС - центральный, опирается на дугу ВС, значит ∠ВОС = 60°.
ΔВОС - равнобедренный, т.к. ОВ = ОС (радиусы), по свойству углов в равнобедренном треугольнике ∠ОВС = ∠ОСВ = (180° - ∠ВОС) : 2 = (180° - 60°) : 2 = 60°.
Следовательно, ΔВОС - равносторонний и ОС = ОВ = ВС = 20.
ответ: 20.
Объяснение: