В прямоугольном треугольнике АВС : угол С=90 град, АВ=30 см, АС=15 см. Найдите ВС, угол В, угол А. (ответ впишите в виде ВС=... , угол В=..., угол А=...)
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Следовательно, основание АС делится на два равных отрезка АН и НС, и угол ВНС является прямым. Мы получаем два прямоугольных треугольника, у которых все три стороны равны: АВ = ВС, т. к. треугольник равнобедренный по условию; АН = НС, т. к. ВН - медиана; ВН - общая сторона По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.
Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА.
Соединим последовательно точки К,М,Н и Т
Треугольники КАТ, КВМ, МСН и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК.
КМНТ - четырехугольник, все стороны которого равны (признак ромба).
Кроме того: диагонали КН║ВС и МТ║АВ.
В прямоугольнике стороны пересекаются под прямым углом, ⇒
параллельные им диагонали ромба КН и МТ тоже пересекаются под прямым углом - признак ромба.
Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника.
Мы получаем два прямоугольных треугольника, у которых все три стороны равны:
АВ = ВС, т. к. треугольник равнобедренный по условию;
АН = НС, т. к. ВН - медиана;
ВН - общая сторона
По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
В прямоугольнике все углы прямые, противоположные стороны равны и параллельны, а диагонали равны и точкой пересечения делятся пополам.
Пусть данный прямоугольник АВСD, точки К, М, Н, Т - соответственно середины АВ, ВС, СD, DА.
Соединим последовательно точки К,М,Н и Т
Треугольники КАТ, КВМ, МСН и НDТ прямоугольные, в каждом один катет равен половине меньшей стороны, другой - половине большей стороны. Следовательно, эти треугольники равны, отсюда равны их гипотенузы: КМ=МН=НТ=ТК.
КМНТ - четырехугольник, все стороны которого равны (признак ромба).
Кроме того: диагонали КН║ВС и МТ║АВ.
В прямоугольнике стороны пересекаются под прямым углом, ⇒
параллельные им диагонали ромба КН и МТ тоже пересекаются под прямым углом - признак ромба.
Четырехугольник КМНТ - ромб, и его вершинами являются середины сторон прямоугольника.