В прямоугольном треугольнике гипотенуза относится к катету как 10:8 1. Найдите высоту, опущенную к гипотенузу, если второй катет равен 6 см 2. Определите площадь треугольника
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sавс / Sмкр = 48 / Sмкр = 22.
Sмкр = 48 / 4 = 12 см2.
ответ: Площадь треугольника МКР равна 12 см2.
а) сначала мысленно разделим фигуру на две части.
получаем две фигуры: квадрат (S₁) и прямоугольник (S₂), общая площадь - S
Дано:
а₁ = 8 м
а₂ = 5 м
b₁ = 8 м
b₂ = 3 м
Найти: S.
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 8*8 = 64 (м²)
4) S₂ = a₂b₂
5) S₂ = 5*3 = 15 (м²)
6) S = 64+15 = 79 (м²) - площадь всей фигуры
ответ: S = 79 м²
б) сначала найдем площадь большей фигуры, затем меньшей и вычтем.
Дано:
а₁ = 40 см
а₂ = 14 см
b₁ = 56 см
b₂ = 20 см
Найти: S
1) S = S₁ + S₂
2) S₁ = a₁b₁
3) S₁ = 40*56 = 2240 (см²)
4) S₂ = a₂b₂
5) S₂ = 14*20 = 280 (см²)
6) S = 2240+280 = 2520 (см²) - площадь всей фигуры
ответ: S = 2520 см²