Сечение катушки - окружность, поделенная на 12 частей, расстояние между которыми ВС= 13,6. (На приложенном рисунке для удобства изображен один из них). Стенки желобков, соединенные с осью катушки ( центром окружности), делят эту окружность на 12 секторов с центральным углом ВОС=360°:12=30° Продолжим радиус СО до пересечения с окружностью в т.А. Соединив точки А, В и С, получим вписанный треугольник, угол которого А по свойству вписанного угла равен половине центрального. ∠ВАС=ВОС:2=15°, По т.синусов 2R=BC:sin∠BAC=13,6:0,2588= ≈52,546 мм
или
Угол АВС опирается на диаметр АС. Треугольник АВС прямоугольный. Диаметр =гипотенуза АС=ВС:sin BAC.≈52,546 мм
ВР/РЕ = 15/2.
Объяснение:
По теореме Менелая в треугольнике СВЕ:
(СМ/МВ)*(ВР/РЕ)*(ЕА/АС) = 1. =>
Подставим известные значения:
(1/3)*(ВР/РЕ)*(2/5) = 1. =>
ВР/РЕ = 15/2. Это ответ.
А если теоремы не знаете, докажем ее.
Проведем ЕН параллельно ВС.
ΔСМА∼ΔЕНА по двум углам (угол CАМ — общий, а ∠НЕА=∠ВСА как соответственные при параллельных прямых СВ и ЕН и секущей СЕ). Следовательно:
СM/ЕН=АM/АН=АС/АЕ =>
ЕН=СM⋅АЕ/AС. (1)
ΔBMP∼ΔHPE по двум углам (∠BPM=∠HPE как вертикальные, а ∠PEH=∠PBM как внутренние накрест лежащие при параллельных прямых BC и HE и секущей BE).
Следовательно:
BM/EH=MP/HP=BP/PE =>
EH=BM⋅PE/BP. (2)
Приравняем (1) и (2) и разделим обе части на левую:
СM⋅АЕ/AС = BM⋅PE/BP => (СM⋅АЕ⋅BP)/(AC⋅BM⋅PE) = 1 или
(СM/МВ)⋅(ВР⋅PЕ)/(ЕA⋅АС) = 1.
Что и требовалось доказать.
Сечение катушки - окружность, поделенная на 12 частей, расстояние между которыми ВС= 13,6. (На приложенном рисунке для удобства изображен один из них). Стенки желобков, соединенные с осью катушки ( центром окружности), делят эту окружность на 12 секторов с центральным углом ВОС=360°:12=30° Продолжим радиус СО до пересечения с окружностью в т.А. Соединив точки А, В и С, получим вписанный треугольник, угол которого А по свойству вписанного угла равен половине центрального. ∠ВАС=ВОС:2=15°, По т.синусов 2R=BC:sin∠BAC=13,6:0,2588= ≈52,546 мм
или
Угол АВС опирается на диаметр АС. Треугольник АВС прямоугольный. Диаметр =гипотенуза АС=ВС:sin BAC.≈52,546 мм