В равнобедренном треугольнике ABC биссектрисы углов при основании образуют при пересечении угол, равный 98 градусов. Найдите угол при вершине этого треугольника.
Раз восьмиугольник правильный, значит все его стороны равны и все углы тоже. Угол такого восьмиугольника можно найти по формуле (где n - количество углов):
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую. Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой. Следовательно, основание АС делится на два равных отрезка АН и НС, и угол ВНС является прямым. Мы получаем два прямоугольных треугольника, у которых все три стороны равны: АВ = ВС, т. к. треугольник равнобедренный по условию; АН = НС, т. к. ВН - медиана; ВН - общая сторона По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.
градусов, значит, каждый угол восьмиугольника равен 135 градусов. Рассмотрим четырёхугольник АВСН, в нём два угла по 135 градусов и два по х градусов (АВ параллельна СН так как точки А и В равноудалены от точек С и Н, это получилась равнобедренная трапеция). В выпуклом четырёхугольнике сумма углов равна 360 градусов, таким образом 2х=90 градусов, следовательно, х=45 градусов. Отсюда мы можем найти углы DСН и GНС, которые равны по 135-х=90 градусов. Аналогично углы СDG и DGН равны по 90 градусов, значит, CDGH - прямоугольник. Одна сторона этого прямоугольника равна стороне восьмиугольника, теперь найдём вторую.
Для этого опустим в трапеции АВСН высоты и . . , потому что получился прямоугольник, а
Таким образом стороны прямоугольника равны АВ и
Мы получаем два прямоугольных треугольника, у которых все три стороны равны:
АВ = ВС, т. к. треугольник равнобедренный по условию;
АН = НС, т. к. ВН - медиана;
ВН - общая сторона
По третьему признаку равенства треугольников (если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны) наши треугольники АВН и ВНС равны.