В равнобедренном треугольнике ABC с основанием BC проведена медиана AM. Найдите медиану AM, если периметр треугольника ABC равен 56 см, а периметр треугольника ABM равен 42 см
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
См. Объяснение
Объяснение:
Угол АСЕ по отношению к треугольнику АВС является внешним углом, который равен сумме углов А и В.
Действительно, так как сумма внутренних углов треугольника равна 180°, то:
∠АСВ = 180° - (∠А +∠В) = 180° - х - уравнение (1)
С другой стороны, так как угол ВСЕ - развёрнуты (равен 180 °), то:
∠АСВ = 180° - (∠АСD +∠DCE) = 180° - у - уравнение (2)
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
АВСДМ - правильная пирамида
АВСД - квадрат. АД=8 см; ОМ=12 см.
АК=КМ; MN=ND
Плоскость сечения параллельна высоте, вертикальная, если АВСД горизонтальная.
ΔАМО; АЕ=ЕО; ЕК - средняя линия ║ МО
Аналогично т.F - cередина ОД; NF║OM
Продолжим ЕF до пересечения с АВ и СД; получим точки L и P.
LKNP - равнобедренная трапеция.
LP=8см. См. фото.
ΔМАО; КЕ - средняя линия; КЕ=МО/2=6 см - высота трапеции.
ΔАМД; KN - средняя линия; KN=АД/2=4 см.
Площадь трапеции = полусумма оснований на высоту.
S=(KN+LP)/2 * КЕ=(8+4)*6/2=36 см².