В равнобедренном треугольнике АВС с основание АС, равным 20 см, внешний угол при вершине В равен 60 градусов. Найдите расстояние от вершины С до прямой АВ.
Центр вписанной окружности треугольника = точка пересечения его биссектрис. В правильном треугольнике биссектрисы, высоты и медианы совпадают. По свойству медианы треугольника, точкой пересечения они делятся в соотношении 2:1 Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3 Отсюда h = 3r = 3×2√3 = 6√3 Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой Отсюда длина стороны треугольника: a = h / sin 60° = 6√3 / (√3/2) = 12
60°; 120°
Р(АВСD)=16 ед
Объяснение:
Рассмотрим треугольник ∆ВDP
BD=4 ед гипотенуза
PD=2 ед катет
Катет в два раза меньше гипотенузы, когда катет против угла 30°
<РВD=30°
Сумма острых углов в прямоугольном треугольнике равна 90°
<РDB=90°-<PBD=90°-30°=60°
Диагональ ромба является биссектриссой его углов.
ВD- биссектрисса угла <АDC
<ADC=2*<PDB=2*60°=120°
Сумма углов прилежащих к одной стороне ромба равна 180°
<ВАD=180°-<ADC=180°-120°=60°
В ромбе с углами 60°; 120°, меньшая диагональ равна стороне ромба.
ВD=AB=4ед
P(ABCD)=4*AB=4*4=16 ед.
Поэтому радиус вписанной окружности правильного треугольника равен 1/3 длины высоты. r = h/3
Отсюда h = 3r = 3×2√3 = 6√3
Высота правильного треугольника образует с его сторонами прямоугольный треугольник. Угол, противолежаший высоте, равен 60°, сторона правильного треугольника является гипотенузой
Отсюда длина стороны треугольника:
a = h / sin 60° = 6√3 / (√3/2) = 12