Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Объяснение:
8.
1) Пусть ∠С = х°, тогда
∠В = 2х
2) Рассмотрим ΔАDС
Он - равнобедренный, т.к. АD= DС по условию. Следовательно,
∠С =∠DАС = х
3) ∠DАС = ∠DАВ - по условию,
∠DАС = ∠DАВ = х, а
∠ВАС = 2х
4) Сумма углов в треугольнике = 180°
∠ВАС + ∠В + ∠С = 180°
2х + 2х + х = 180°
5х = 180°
х = 180° : 5 = 36°
∠С = 36°
∠ВАС = ∠В = 36° * 2= 72°
9.
1) △NКР - равнобедренный, т.к. NR = KP по условию, значит,
∠KNP = ∠NPK = ( 180° - 110°) /2 = 70°/2 = 35°
2) ∠KNP = ∠KNМ по условию, значит,
∠KNP = ∠KNМ =35° , а
∠МNР = 2 *35° = 70°
3) Рассмотрим △МNР
∠МNР =70°
∠KNМ =35°
∠КМР = 180° - 70° - 35° = 75°
10.
Пусть 1ч. угла = х, тогда
∠TSR = 3x,
∠RSP = 5x, следовательно,
∠TSP = 3x + 5x =8x
2) Рассмотрим △ROP и △RОS
RO -общая сторона, РО = ОS по условию,
∠ROS = ∠ROP =90° по условию. Следовательно,
△ROP и △RОS по 2-м сторонам и углу между ними. Из этого следует,что
∠P = ∠RSP = 5x
3) Рассмотрим △РTS
∠P = 5х, ∠TSP = 8x, ∠TPS = 115°, тогда
∠P +∠TSP +∠TPS = 180°
5х + 8х + 115° = 180°
13х = 65°
х = 5°
4) ∠P = 5х = 5 * 5° = 25°
∠TSP = 8x = 8 * 5° = 40°
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18