По-моему решается так: 1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB. 2) Биссектриса делит угол АСД на равные углы АСМ и МСД. 3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ). 4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5. 5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10. 6) Периметр прямоугольника равен (10+5)2= 30 ответ: 30
Объяснение:
1. В трапеции углы прилежащие к боковой стороне равны 180°.
∠В=180°-70°=110°;
∠С=180°-50°=130°.
***
2. В равнобокой трапеции углы при основаниях равны:
∠F=∠M=100°;
∠E=∠N=180°-100°=80°.
***
3) ∠P=180°-75°=105°;
∠S=180°-100°=80°.
***
4) ∠M= 180°-65°=115°;
∠F=∠E=90°.
***
5) ∠KLN=∠LNM=30*, как накрест лежащие при KL║MN и секущей NL.
∠N=30°+30°=60°;
∠L=∠K=180°-60°=120°;
∠M=180°-120°=60°.
***
6) ???
***
7) ∠C=180°-60°=120°;
∠ВАС=∠ВСА=120°-90°=30°;
∠A=30°+30°=60°;
∠B=180°-60°=120°.
***
8) ∠K=∠RMK=(180°-50°)/2=65°;
∠R=180°-65°=115°;
∠SRM=115°-50°=65°;
∠SMR=180-(90°+65°)=25°;
∠M=25°+65°=90°.
***
9) ∠PTL=180°-(90°+55°)=180°-145°=35°;
∠LTO=∠O=90°-35°=55°;
∠L=180°-55°=125°.
∠P=∠T=90°.
***
10) ???
1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB.
2) Биссектриса делит угол АСД на равные углы АСМ и МСД.
3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ).
4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5.
5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10.
6) Периметр прямоугольника равен (10+5)2= 30
ответ: 30