АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Допустим, что Вы имели в виду, что наклонные проведены к одной плоскости. Проведем из этой же точки перпендикуляр к данной плоскости и получим два прямоугольных треугольника, у которых гипотенузы a и b (наклонные), а катеты - перпендикуляр h к плоскости (общий) и проекции наклонных, равные 8см и 20см. тогда по Пифагору имеем: h²=a²-20² и h²=b²-8². Или a²-400=b²-64. Но нам дано, что a=b+8. Подставим эти значения в уравнение: (b+8)²-400=b²-64 или b²+16b+64-400=b²-64. отсюда 16b=272 и b=17см. тогда а=b+8=25см. ответ: длины наклонных равны 25см и 17см
Проверка: h=√(25²-400)=√225=15 и h=√(17²-64)=√225=15.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
b²+16b+64-400=b²-64. отсюда 16b=272 и b=17см. тогда а=b+8=25см.
ответ: длины наклонных равны 25см и 17см
Проверка: h=√(25²-400)=√225=15 и h=√(17²-64)=√225=15.