В равнобедренном треугольнике проведены биссектрисы углов, прилежащих к основанию. Определи длину биссектрисы угла ∡A, если длина биссектрисы угла ∡C равна 20 см.
Рассмотрим треугольники ΔDAC и Δ.
(Все углы и стороны нужно записывать большими латинскими буквами.)
1. Углы, прилежащие к основанию равнобедренного треугольника,
. Так как данный треугольник равнобедренный, то ∡B
= ∡BCA.
2. Так как проведены биссектрисы этих углов, справедливо, что ∡ =∡DAC=∡DCE= ∡ .
3. У рассматриваемых треугольников общая сторона
.
Значит, треугольники равны по второму признаку равенства треугольников.
У равных треугольников равны все соответствующие элементы, в том числе стороны
=
.
Длина искомой биссектрисы
см.
Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак).
Что и требовалось доказать.
2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20.
Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20.
ответ: Sapkd=20.
3. По Пифагору СК=√(64+25)=√89.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда
PK=√41.