В равнобедренном треугольнике с длиной основания 16 cм проведена биссектриса угла ∡ABC. Используя второй признак равенства треугольников, докажи, что отрезок BD является медианой, и определи длину отрезка AD.
Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке);
1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то ∡ A = ∡ ;
2. так как проведена биссектриса, то ∡ = ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC — .
По второму признаку равенства треугольников ΔABD и ΔCBD равны. Значит, равны все соответствующие элементы, в том числе стороны AD=CD. А это означает, что отрезок BD является медианой данного треугольника и делит сторону AC пополам.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Перпендикуляр, проведённый из вершины треугольника к прямой содержащей противолежащую сторону.Сумма длин сторон треугольника.Треугольник с двумя равными сторонами.Треугольник с углом равным 90°.Большая из сторон прямоугольного треугольника.Сторона равнобедренного треугольника.В любом треугольнике их три.Треугольник, один из углов которого больше 90°.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.Чем является точка А в треугольнике АВС?Отрезок, который делит угол треугольника пополам.
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).
Перпендикуляр, проведённый из вершины треугольника к прямой содержащей противолежащую сторону.Сумма длин сторон треугольника.Треугольник с двумя равными сторонами.Треугольник с углом равным 90°.Большая из сторон прямоугольного треугольника.Сторона равнобедренного треугольника.В любом треугольнике их три.Треугольник, один из углов которого больше 90°.Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.Чем является точка А в треугольнике АВС?Отрезок, который делит угол треугольника пополам.
ответы:
1. Высота. 2. Периметр. 3. Равносторонний. 4. Прямоугольный. 5. Гипотенуза. 6. Основание. 7. Угол. 8. Тупоугольный. 9. Медиана. 10. Вершина. 11. Биссектриса.