В равнобедренном треугольнике с длиной основания 61 cм проведена биссектриса угла
∡ABC
. Используя второй признак равенства треугольников, докажи, что отрезок
BD является медианой, и определи длину отрезка AD
.
Рассмотрим треугольники ΔABD и Δ (треугольник записать в алфавитном порядке);
1. так как прилежащие к основанию углы данного равнобедренного треугольника равны, то
∡A=?
∡;
2. так как проведена биссектриса, то ∡ CBD;
3. стороны AB=CB у треугольников ΔABD и ΔCBD равны, так как данный ΔABC —. По второму признаку равенства треугольников ΔABD и ΔCBD равны.Значит, равны все соответствующие элементы, в том числе стороны AD=C. А это означает, что отрезок BDя вляется медианой данного треугольника и делит сторону AC пополам.
AD=
см.
Можно. Медиана прямоугольного треугольника к гипотенузе равна её половине и делит исходный на два равнобедренных.
Так как углы равнобедренных треугольников равны, проще всего делить равнобедренный прямоугольный треугольник. Сумма его острых углов 90°, и каждый равен 45° ( см. рис. 1).
Другой случай - медиана, проведенная из прямого угла, делит исходный на остроугольный и тупоугольный с вершиной на гипотенузе. . Тупоугольный треугольник можно разделить на 3 равнобедренных, два крайних при этом будут между собой равны. (см. рис.2). Равные углы окрашены в одинаковые цвета. Доказать, что эти треугольники равнобедренные, наверняка сможете без труда.