ответ: №42.5 sin∠А= 0,8572; cos∠А=0,5077; tg∠А=1,6643.
sin∠C=0,7960; cos∠С=0,6018; tg∠C=1,3270.
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
№42.6 выполнить аналогично №42.5
Объяснение: Пусть в Δ АВС АВ=13, ВС=14, АС=15.
Из теоремы косинусов:
cos∠А=(13²+15²-14²) : (2*13*15)=(169+225-196):390=0,5077 ⇒
⇒ ∠А≈59°; sin∠А= 0,8572; tg∠А=1,6643.
По теореме синусов АВ : sin∠C=ВC : sin∠А ⇒
⇒ sin∠C=АВ*sin∠А:ВС=13*0,8572:14=0,7960 ⇒
⇒ ∠С≈53°, cos∠С=0,6018; tg∠C=1,3270.
Из теоремы о сумме углов треугольника:
∠В= 180° - (∠А+∠С)=180° - (59°+53°)=180° - 112°= 68° ;
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²
ответ: №42.5 sin∠А= 0,8572; cos∠А=0,5077; tg∠А=1,6643.
sin∠C=0,7960; cos∠С=0,6018; tg∠C=1,3270.
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
№42.6 выполнить аналогично №42.5
Объяснение: Пусть в Δ АВС АВ=13, ВС=14, АС=15.
Из теоремы косинусов:
cos∠А=(13²+15²-14²) : (2*13*15)=(169+225-196):390=0,5077 ⇒
⇒ ∠А≈59°; sin∠А= 0,8572; tg∠А=1,6643.
По теореме синусов АВ : sin∠C=ВC : sin∠А ⇒
⇒ sin∠C=АВ*sin∠А:ВС=13*0,8572:14=0,7960 ⇒
⇒ ∠С≈53°, cos∠С=0,6018; tg∠C=1,3270.
Из теоремы о сумме углов треугольника:
∠В= 180° - (∠А+∠С)=180° - (59°+53°)=180° - 112°= 68° ;
sin∠В=0,9272; cos∠В=0,3746; tg∠В=2,4750.
1. Радиус сферы равен половине диаметра, R = 25 см.
Отрезок, соединяющий центр сферы с центром сечения, перпендикулярен сечению. это и есть расстояние от центра сферы до сечения.
Итак, ОА = 25 см, ОС = 15 см. Из прямоугольного треугольника АОС по теореме Пифагора находим радиус сечения:
АС = √(ОА² - ОС²) = √(25² - 15²) = √(625 - 225) = √400 = 20 cм
Линия пересечения сферы плоскостью - окружность. Ее длина:
C = 2π·AC = 2π · 20 = 40π см
2. Сечение шара - круг. Его площадь равна 36π см²:
Sсеч = π · r² = 36π
r² = 36
r = 6 см
Из прямоугольного треугольника АОС по теореме Пифагора:
ОС = √(ОА² - r²) = √(100 - 36) = √64 = 8 см - искомое расстояние.
3. Радиус большого круга равен радиусу шара.
Площадь сечения:
Sсеч = πr²
Площадь большого круга:
S = πR², R = √(S/π)
Sсеч / S = πr² / (πR²) = r²/ R²
По условию Sсеч / S = 3 / 4, ⇒
r²/ R² = 3 / 4, тогда r/R = √3/2
В прямоугольном треугольнике АОС r/R - это косинус угла А.
Тогда ∠А = 30°.
Расстояние от центра шара до сечения - отрезок ОС. Это катет, лежащий напротив угла в 30°, значит он равен
OC = R/2 = √(S/π) / 2 = √S/(2√π)
4. Радиус шара равен половине диаметра:
R = 2√3 см
Прямоугольный треугольник ОВС равнобедренный, так как в нем острый угол равен 45°, поэтому
ОС = r = R/√2 = 2√3 / √2 = √6 см
Sсеч = πr² = π · (√6)² = 6π см²