Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.
Дано:тр. ABC, BD=DA, BF=FC, DF
Доказать: DF||AC, DF=1/2 AC
Допустим, что DF не параллельна AC . Тогда из середины D стороны AB проведем прямую, параллельную AC, которая пересечет сторону BC не в точке F. Но эта точка по теореме будет также серединой стороны BC. Получилось, что у BC две середины, что невозможно, а поэтому допущение неверно. Следовательно, DF||AC, т.е. средняя линия параллельна третьей стороне.
Возьмем AE=AC, тогда DE - средняя линия и DE||BC (по доказанному) . DFCE — параллелограмм, поэтому DE=EC=1/2 AC(так как AE=EC по построению).
Если прямая, пересекающая середину одной стороны треугольника, параллельна другой стороне данного треугольника, то она делит третью сторону пополам.
Дано:тр. ABC, BD=DA, BF=FC, DF
Доказать: DF||AC, DF=1/2 AC
Допустим, что DF не параллельна AC . Тогда из середины D стороны AB проведем прямую, параллельную AC, которая пересечет сторону BC не в точке F. Но эта точка по теореме будет также серединой стороны BC. Получилось, что у BC две середины, что невозможно, а поэтому допущение неверно. Следовательно, DF||AC, т.е. средняя линия параллельна третьей стороне.
Возьмем AE=AC, тогда DE - средняя линия и DE||BC (по доказанному) . DFCE — параллелограмм, поэтому DE=EC=1/2 AC(так как AE=EC по построению).
Дано: ΔABC - равнобедренный, АВ=ВС, Sabc= 192 см², АС=АВ+4, окружность, впис. в ΔАВС, OR - радиус, OR= 6 см
Найти: АВ, ВС, АС.
Решение.
Пусть АВ=ВС= х см. По условию основание на 4 см больше, чем боковая сторона, значит, АС= х+4.
Площадь треугольника равна произведению полупериметра треугольника на радиус вписанной окружности.
S= p•r, где S - площадь треугольника, p - его полупериметр, r - радиус вписанной окружности.
Находим периметр ΔАВС.
Р= АВ+ВС+АС= х+х+х+4= 3х+4.
Полупериметр равен соответственно р= (3х+4)/2.
S= p•r;
192= (3x+4)/2 •6;
192= (3х+4)•3;
192= 9х+12;
9х= 192–12;
9х= 180;
х= 20 (см)
Значит, АВ=ВС= 20 см, АС= х+4= 20+4= 24 см.
ответ: 20 см, 20 см, 24 см.
Объяснение: