Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
1 Воздух в нижней атмосфере находится в постоянном движении. Его громадные потоки различной температуры и влажности перемещаются над земной и водной поверхностью, и, когда одна воздушная масса вытесняет другую, погода меняется. 2 Погода очень многообразна. Но все же ее можно как-то классифицировать. Различают три основные группы погоды: 1) безморозную, 2) с переходом температуры воздуха через 0°, 3) морозную. Эти группы объединяют 16 классов погоды, выделенных по их значению для человека и для некоторых видов его практической деятельности.
Безморозной называют такую погоду, при которой не только средняя суточная, но и минимальная температура воздуха бывает выше 0°. В группе безморозной погоды по температуре и относительной влажности воздуха, по облачности, наличию или отсутствию осадков и по силе ветра выделяются следующие классы погоды: I — солнечная, очень жаркая и очень сухая; II — солнечная, жаркая, сухая; III — солнечная, умеренно влажная и влажная; IV — днем облачная; V — ночью облачная; VI — пасмурная; VII — дождливая; XVI — очень жаркая и очень влажная.
У погоды с переходом температуры воздуха через 0° максимальная температура воздуха за сутки бывает положительной, а минимальная — отрицательной. В этой группе различают погоды двух классов: VIII — с облачным днем и IX — с ясным днем.3 Метеорология – наука о земной атмосфере, её строении, свойствах и происходящих в ней явлениях и процессах. Задачи современной метеорологии не ограничиваются объяснением физической сущности атмосферных процессов. Углубленное изучение физики атмосферы позволило выделить ряд самостоятельных наук (научных дисциплин) , имеющих свои объекты изучения. 3 Российским метеорологам повезло. Каждый год 23 марта они отмечают сразу два профессиональных праздника: Всемирный день метеорологии и приуроченный к нему День работников гидрометеорологической службы России.
См. Объяснение
Объяснение:
Угол АСЕ по отношению к треугольнику АВС является внешним углом, который равен сумме углов А и В.
Действительно, так как сумма внутренних углов треугольника равна 180°, то:
∠АСВ = 180° - (∠А +∠В) = 180° - х - уравнение (1)
С другой стороны, так как угол ВСЕ - развёрнуты (равен 180 °), то:
∠АСВ = 180° - (∠АСD +∠DCE) = 180° - у - уравнение (2)
Так как в левой части уравнений (1) и (2) - одно и то же число, то из этого следует, что:
180° - х = 180° - у
х = у
(∠А +∠В) = (∠АСD +∠DCE).
Так как ∠А = ∠В и ∠АСD = ∠DCE,
то из этого следует, что ∠А = ∠В = ∠АСD = ∠DCE.
Так как ∠А и ∠АСD являются внутренними накрест лежащими углами при прямых АВ и СD и секущей АС, при этом ∠А = ∠АСD, то это означает, что АВ║CD (если при пересечении двух прямых третьей внутренние накрест лежащие углы равны, то такие прямые параллельны), - что и требовалось доказать.
Примечание.
Аналогично можно доказать параллельность прямых АВ и СD через равенство ∠В = ∠DCE, которые являются соответственными при прямых АВ и СD и секущей ВЕ: если при пересечении двух прямых третьей соответственные углы равны, то такие прямые параллельны. Следовательно, АВ║CD. Что и требовалось доказать.
1 Воздух в нижней атмосфере находится в постоянном движении. Его громадные потоки различной температуры и влажности перемещаются над земной и водной поверхностью, и, когда одна воздушная масса вытесняет другую, погода меняется. 2 Погода очень многообразна. Но все же ее можно как-то классифицировать. Различают три основные группы погоды: 1) безморозную, 2) с переходом температуры воздуха через 0°, 3) морозную. Эти группы объединяют 16 классов погоды, выделенных по их значению для человека и для некоторых видов его практической деятельности.
Безморозной называют такую погоду, при которой не только средняя суточная, но и минимальная температура воздуха бывает выше 0°. В группе безморозной погоды по температуре и относительной влажности воздуха, по облачности, наличию или отсутствию осадков и по силе ветра выделяются следующие классы погоды: I — солнечная, очень жаркая и очень сухая; II — солнечная, жаркая, сухая; III — солнечная, умеренно влажная и влажная; IV — днем облачная; V — ночью облачная; VI — пасмурная; VII — дождливая; XVI — очень жаркая и очень влажная.
У погоды с переходом температуры воздуха через 0° максимальная температура воздуха за сутки бывает положительной, а минимальная — отрицательной. В этой группе различают погоды двух классов: VIII — с облачным днем и IX — с ясным днем.3 Метеорология – наука о земной атмосфере, её строении, свойствах и происходящих в ней явлениях и процессах. Задачи современной метеорологии не ограничиваются объяснением физической сущности атмосферных процессов. Углубленное изучение физики атмосферы позволило выделить ряд самостоятельных наук (научных дисциплин) , имеющих свои объекты изучения. 3 Российским метеорологам повезло. Каждый год 23 марта они отмечают сразу два профессиональных праздника: Всемирный день метеорологии и приуроченный к нему День работников гидрометеорологической службы России.
Объяснение: