В школе провели День святого Валентина. Всего детей в школе 119, и девочки подарили валентинки мальчикам. Какое наибольшее количество девочек могло принимать участие в празднике, если точно известно, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков и одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза?
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
Объяснение:
1) Если это боковые стороны, то тогда длина третьей стороны (основания):
36 - 26 = 10 см.
А боковые стороны равны:
26 : 2 = 13 см
2) Если это одна боковая сторона и основание, то тогда составляем систему уравнений и решаем её.
х - основание,
у - боковая сторона,
х + у = 26 - это первое уравнение,
х + 2у = 36 - это второе уравнение.
Умножаем первое уравнение на 2 и из полученного результата вычитаем второе уравнение, получаем:
2х + 2у = 52 - домножили первое уравнение на 2
2х - х + 2у- 2у = 52 -36
х = 16 см - это основание,
тогда боковые стороны равны:
(36 - 16) : 2 = 20 : 2 = 10 см
Так как сумма 2-х сторон больше длины основания, то стороны пересекутся, значит, такой треугольник существует.
Вариант 1: 10 см, 13 см, 13 см;
Вариант 2: 16 см, 10 см, 10 см.
где AA и BB – некоторые числа. При этом коэффециенты AA и BB одновременно не равны нулю, так как тогда уравнение теряет смысл.
Если C=0C=0, а AA и BB отличны от нуля, то прямая проходит через через начало координат.
Если A=0A=0, а BB и CC отличны от нуля, то прямая параллельна оси OxOx.
Если B=0B=0, а AA и CC отличны от нуля, то прямая параллельна оси OyOy.
Если B=C=0B=C=0, а AA отличен от нуля, то прямая совпадает с осью OyOy.
Если A=C=0A=C=0, а BB отличен от нуля, то прямая совпадает с осью OxOx.