В свободное время одноклассники Вася и Петя любят играть в различные логические игры: морской бой, крестики-нолики, шахматы, шашки и многое другое. Ребята уже испробовали и поиграли во всевозможные
классические игры подобного рода, включая компьютерные. Однажды им захотелось сыграть во что-
нибудь новое, но ничего подходящего найти не удалось. Тогда Петя придумал следующую игру
«Угадайка»: Играют двое участников. Первый загадывает любое трехзначное число, такое что первая и
последняя цифры отличаются друг от друга более чем на единицу. Далее загадавший число игрок
переворачивает загаданное число, меняя первую и последнюю цифры местами, таким образом получая
еще одно число. Затем из максимального из полученных двух чисел вычитается минимальное. Задача
второго игрока – угадать по первой цифре полученного в результате вычитания числа само это число.
Например, если Вася загадал число 487, то перестановкой первой и последней цифры он получит число
784. После чего ему придется вычесть из 784 число 487, в результате чего получится число 297, которое и
должен отгадать Петя по указанной первой цифре «2», взятой из этого числа. Петя успевает лучше Васи по
математике, поэтому практически всегда выигрывает в играх такого типа. Но в данном случае Петя схитрил
и специально придумал такую игру, в которой он не проиграет Васе в любом случае. Дело в том, что
придуманная Петей игра имеет выигрышную стратегию, которая заключается в следующем: искомое число
всегда является трехзначным и вторая его цифра всегда равна девяти, а для получения значения последней
достаточно отнять от девяти первую, т.е. в рассмотренном выше случае последняя цифра равна 9-2=7.
Пете еще упростить процесс отгадывания числа по заданной его первой цифре, написав
соответствующую программу
Треугольник АВС равносторонний, так как АВ = АС как отрезки касательных к окружности проведённых из одной точки. ∠ВАС = 60, значит ∠АВС = ∠АСВ = (180 - 60) : 2 = 60 Рассмотрим четырёхугольник АСОВ. Сумма углов четырёхугольника равна 360 . ∠АСО = ∠АВО = 90 как углы образованные радиусом окружности и касательной к окружности, Значит ∠ ВОС = 360 - 90 - 90 - 60 = 120. По теореме косинусов найдем ВС² = ВО² + ОС² - 2 * ВО * ВО* cos 120
ВС² = 400 + 400 + 2 * 400 * 0,5 = 800 + 400 = 1200
ВС = 20√3
Р = 20√3 * 3 =60√3мм²
(бро , если не сложно мне с решением моего)
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²