Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
Первое, что нетрудно доказывается, --- треугольник АВК прямоугольный. Площадь прямоугольного треугольника = половине произведения катетов))) гипотенуза АВ = 4 --это очевидно из получившейся трапеции... а чтобы найти катеты не хватает известных углов))) на рисунке есть два равных треугольника: треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу))) из этого очевидно: АК = 2*КВ по т.Пифагора 4х² + х² = 16 ---> 5x² = 16 S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Найдём все расстояния между точками:
АВ = sqrt((2 - (-1)) ^ 2 + (7 - 4) ^ 2) = sqrt(9 + 9) = 3sqrt2
BC = sqrt((1 - (-1)) ^ 2 + (4 - 2) ^ 2) = sqrt(4 + 4) = 2sqrt2
AC = sqrt((2 - 1) ^ 2 + (7 - 2) ^ 2) = sqrt(1 + 25) = sqrt26
Тип треугольника определяется по наибольшему углу, который, в свою очередь, лежит напротив наибольшей стороны треугольника. Чтобы сравнить стороны, можно возвести их длины в квадрат. На неравенство это не повлияет, так как каждая из сторон строго больше 0:
(АВ) ^ 2 = 18
(BC) ^ 2 = 8
(CD) ^ 2 = 26 - Наибольшая сторона.
Найдём наибольший угол треугольника по теореме косинусов:
26 = 18 + 8 - 2(3sqrt2)(2sqrt2)(cos(x)), где х - искомый угол. // - 26
2(3sqrt2)(2sqrt2)(cos(x)) = 0
12*2*cos(x) = 0
24cos(x) = 0 // : 24
cos(x) = 0
x = 90 или 180 градусов, но так как это угол в треугольнике, то он строго меньше 180 градусов (по теореме о сумме углов треугольника) ==> x = 90 градусов ==> треугольник ABC - прямоугольный, ч.т.д.
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2