двивсь : якщо кути при основі рівні то по першій ознаці подібності трикутникі - ці трикутники подібні . Знаємо, що вони рівнобедренні і якщо сторони одного трикутника відносятся як 7:4, то і сторони другого трикутника відносятся як 7:4.
Тепер треба визначити які то сторони:
1 варіант: основа складає 7х, тоді бічні сторони 4х
Р=7х+4х+4х ,
180=15х
х=180:15
х=12
основа 7х=7*12=84(см)
бічні сторони 4х=4*12=48 (см)
2 варіант: основа складає 4х, бічні сторони складають 7х
Відповідь:
84 см, 48см, 48 см
або 40 см, 70 см,70 см
Пояснення:
двивсь : якщо кути при основі рівні то по першій ознаці подібності трикутникі - ці трикутники подібні . Знаємо, що вони рівнобедренні і якщо сторони одного трикутника відносятся як 7:4, то і сторони другого трикутника відносятся як 7:4.
Тепер треба визначити які то сторони:
1 варіант: основа складає 7х, тоді бічні сторони 4х
Р=7х+4х+4х ,
180=15х
х=180:15
х=12
основа 7х=7*12=84(см)
бічні сторони 4х=4*12=48 (см)
2 варіант: основа складає 4х, бічні сторони складають 7х
тоді Р=4х+7х+7х
180=18х
х=180:18
х=10
основа 4х=4*10=40(см)
бічні сторони 7х=7*10=70(см)
Дано уравнение параболы 5x^2-7x-2y-4=0
Выделяем полные квадраты:
5(x²-2·(7/10)x + (7/10)²) -5·(7/10)² = 5(x-(7/10))²- (49/20)
Преобразуем исходное уравнение:
Получили уравнение параболы:
(x - x0)² = 2p(y - y0) .
(x-(7/10))² = 2·(1/5)(y - (-129/40)) .
Ветви параболы направлены вверх (p>0), вершина расположена в точке (x0, y0), то есть в точке ((7/10); (-129/40)) .
Параметр p = 1/5.
Координаты фокуса: (xo; yo+(p/2)) = (7/10); (-125/40)).
Уравнение директрисы: y = y0 - p/2
y = (-129/40) - (1/10) = (-133/40 ).
Параметры кривой более подробно даны во вложении.