В трапеции ABCD с длинами оснований AD = 12см, BC = 8см на луче BC взята такая точка М, что АМ делит трапецию на две равновеликие фигуры. В каком соотношении АМ делит сторону CD?
№1 по теореме ФалесаМN/МP = MK/ME12/8=MK/6MK= 9 МP/МN =PE/NK8/12=PE/NK = 2 : 3 №2Треугольник АВС подобен треугольнику MNK по второму признаку подобности (по двум пропорцианильным сторонам и равному углу между ними)AB/MN = BC/NK=12/6=18/9=2 - коэф.подобности,Значит AB/MN= AC/MK , MK= 12 x 7/6=14В подобных треугольниках соответствующие углы равны.угол С =60, угол А =50№3треугольник АОС подобен треугольнику ОДВ по первому признаку подобности (по двум равным углам)Периметры подобных треугольников относятся как соответствующие стороны -Периметр АОС : периметру ВОД = АО : ОВ=2 :3,Периметрр АОС = периметр ВОД х 2 /3= 21 х 2/3=14
Дано:
∠А = 90°
ВС = 7 см
AD = 10 см
СD = 5 см
Найти:
АВ - меньшая боковая сторона
Поскольку трапеция прямоугольная и ∠А = 90°, то и ∠В = 90° и меньшая сторона трапеции АВ является высотой трапеции
Из вершины С опустим высоту СК на большую сторону AD трапеции.
СК = АВ
Высота СК делит большее основание AD трапеции на два отрезка
АК = ВС = 7 cм и KD = AD - AK = 10 см - 7 см = 3 см
ΔСКD - прямоугольный с гипотенузой CD = 5 cм
По теореме Пифагора
CD² = CK² + KD²
5² = CK² + 3²
CK² = 25 - 9 = 16
CK = 4 (см)
Поскольку АВ = СК, то АВ = 4 см
Меньшая сторона трапеции АВ = 4 см