Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
Диагональ нижнего основания пирамиды l1 равно
(l1)^2=8^2+8^2=128
l1=8*sqrt(2)
Диагональ верхнего основания пирамиды l2 равно
(l2)^2=6^2+6^2=72
l2=6*sqrt(2)
Половина нижней диагонали равна 4*sqrt(2), а половина верхней 3*sqrt(2)
Их разность равна 4*sqrt(2)- 3*sqrt(2)=sqrt(2)
Рассмотрим прямоугольный треугольник, стороны которого равны sqrt(2) и высота пирамиды - это катеты, а гипотенуза - боковое ребро пирамиды (n), тогда
n^2=5^2+(sqrt(2)^2=25+2=27
n=sqrt(27) - боковое ребро пирамиды
Биссектриса углов А и Д параллелограмма АВСД пересекаются в точке М, дежащий на стороне ВС. Луч ДМ пересекает прямую АВ в точке N. Найдите периметр параллелограмма АВСД, если АN=10 СМ
РЕШЕНИЕ
сделаем построение по условию
<ADN=<CDN т.к. DN - биссектриса <D
(AN) || (CD) тогда <AND=<CDN -скрещивающиеся углы
треугольник NAD - равнобедренный (<AND=<АDN )
|AN|=|AD\=10см
(АМ) - биссектриса, высота, медиана
по теореме Фалеса параллельные прямые (AD) || (BC) отсекают на сторонах <AND
пропорциональные отрезки , т.к. | NM |=| MD | следовательно |NB| = |АB| =|AN| / 2=10/2=5см
ПЕРИМЕТР параллелограмма AB+BC+CD+DA=5+10+5+10=30 см
ответ периметр 30см