а) Проведем BH⊥A₁C₁. Искомое расстояние BH = d есть высота BH - ΔBA₁C₁. ΔA₁BC₁ равносторонний — все его стороны, будучи диагоналями граней, равны ⇒ A₁B = BC₁ = √2, cледовательно:
б) Проведем BH⊥BD₁ Искомое расстояние AH = d есть высота AH - ΔABD₁. ΔABD₁ - прямоугольный. Действительно, прямая AB⊥(ADD₁) и поэтому перпендикулярна любой прямой, лежащей в этой плоскости — в частности, прямой AD₁.
Дано:
ABCDA₁B₁C₁D₁ - куб
AB = 2
--------------------------------
Найти:
а) р(B, A₁C₁) - ?
б) р(A, BD₁) - ?
а) Проведем BH⊥A₁C₁. Искомое расстояние BH = d есть высота BH - ΔBA₁C₁. ΔA₁BC₁ равносторонний — все его стороны, будучи диагоналями граней, равны ⇒ A₁B = BC₁ = √2, cледовательно:
sin∠BA₁H → BH/BA₁ → BH = BA₁ × sin60° = √2 × √3/2 = √6/2 ⇒ BH = р(B, A₁C₁) = √6/2
(Рисунок показан внизу где влево).
б) Проведем BH⊥BD₁ Искомое расстояние AH = d есть высота AH - ΔABD₁. ΔABD₁ - прямоугольный. Действительно, прямая AB⊥(ADD₁) и поэтому перпендикулярна любой прямой, лежащей в этой плоскости — в частности, прямой AD₁.
Имеем: AB = 2, AD₁ = √2, BD₁ = √3
Если S — площадь треугольника ABD₁, то получаем:
2S = AB×AD₁ = BD₁×AH ⇒ AH = AB×AD₁/BD₁ = 2×√2/√3 = 2√2/√3 × √3/√3 = 2√2×3/(√3)² = 2√6/3 ⇒ р(A, BD₁) = AH = 2√6/3
(Рисунок показан внизу где вправо).
ответ: а) р(B, A₁C₁) = √6/2, б) р(A, BD₁) = 2√6/3
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.