Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)
<Х=118°
Объяснение:
∆ABD- прямоугольный треугольник, т.к. <АВD вписанный угол опирается на дугуАD=180°
Сумма острых углов в прямоугольном треугольнике равна 90°
<DAB+<BDA=90°
<DAB=90°-<BDA=90°-28°=62°
<DAB- вписанный угол опирается на дугуВD(меньшая)
Тогда дугаВD(меньшая)=2*<DAB=2*62°=124°
Вся окружность составляет полный угол который равен 360°
дугаВD(меньшая)+дугаВD(боль)=360°
ДугаВD(боль)=360°-дугаВD(меньшая)=
=360°-124°=236°
<ВСD- вписанный угол опирается на дугуВD(боль)
<ВCD=дугаВD(боль):2=236°:2=118°
Обозначение:
дугаВD(боль)- большая дугаBD
Итак. Раз у нас прямоугольник, то все углы его прямы и равны 90(по опр.). По этому мы можем спокойно найти угол, который находится между большей стороной и диагональю: 90-53=37.
И все углы, образованные диагональю в этом прямоугольнике будут равны либо 53, либо 37(в зависимости от расположения: накрест лежащие углы равны). Что из них больше, решайте сами.
Если вам нужны внешние углы, которые, опять же, образует диагональ с прямоугольником: то они равны сумме углов, не смежных с ними(в треугольниках, естественно) Углы в треугольниках вам известны: 90,37 и 53. Значит один внешний угол будет равняться: 53+90=143, а второй: 37+90=127.
Итак, все углы: 37, 53, 143, 127.(Ибо запрос: "Найти больший из углов образованный диагональю прямоугольника" более чем некорректен)