Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Пусть точка вне плоскости М.
Т.к. она равноудалена от вершин треугольника АВС, то ее перпендикуляр МН (расстояние до треугольника) опускается в центр описанной около треугольника окружности. Центр описанной около прямоугольного треугольника окружности лежит в середине гипотенузы.
Значит НВ = АВ:2 = 6см
Получился прямоугольный треугольник МВН: гипотенуза МВ = 10см,
катет НВ = 6см и катет МН, который нужно найти.
Теорема Пифагора
МН² = МВ² - НВ² = 100 - 36 = 64 = 8²
ответ: расстояние от точки до плоскости 8 см
1) 72° (так как сумма углов треугольника равна 180°)
2)49° (так как сумма углов треугольника равна 180°)
3)65° (так как внешний угол смежный с внутренним)
4)3° (так как внешний угол смежный с внутренним)
5)68° (биссектриса делить угол на 2 равных угла)
6)82° (биссектриса делить угол на 2 равных угла)
7) 44° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 46)
8) 8° (угол при высоте равен 90°, а сумма ∠Δ равна 180 °, тоесть нужно было от 180 отнять 90 и 82)
9) 7 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
10) 29 (медиана соединяется с центром стороны, тоесть делит сторону AC пополам)
11) 10,5 и 11 (ну если середина то нужно на 2 делить)
12) 33 и 18,5 (ну если середина то нужно на 2 делить)