Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.
Противоположные стороны параллелограмма равны (свойство параллелограмма) => AB = CD, BC = AD,
Периметр равен сумме всех сторон, поскольку противоположные стороны равны, то периметр равен удвоенной сумме смежных сторон => P = 2(AB+BC) = 78см, 2(AB+BC) = 78см, AB+BC = 39см.
BK:KC = 3:7, BK = 3x, KC = 7x, BK + KC = 3x + 7x = 10x = BC.
Биссектрисса параллелограмма отсекает от него равнобедренный треугольник (свойство параллелограмма) => треуг. ABK — равнобедренный, AB = BK. =>
AB = BK = 3x,
AB + BC = 3x + 10x = 13x = 39см, x = 3см.
AB = 3x = 3 × 3см = 9см,
BC = 10x = 10 × 3см = 30см.
ответ: AB = 9см, BC = 30см, CD = 9см, AD = 30см.
Объяснение:
1)Рассмотрим △АВС.
Так как углы при основании АС равны (∠А =∠С), то △АВС - равнобедренный.
В равнобедренном треугольнике боковые стороны равны.
АВ=ВС.
2) Рассмотрим △BDC и △FDE.
BD=DF, CD= ED, ∠EDF =∠CDB - как вертикальные.
Следовательно △BDC = △FDE по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: BC = EF.
Значит АВ=ВС=EF.
3) Рассмотрим △EHF и △KHF.
EH = KH, ∠EHF =∠KHF, HF - общая.
△EHF = △KHF по двум сторонам и углу между ними ( первый признак равенства треугольников).
Из равенства треугольников следует равенство сторон: EF = FK.
Значит АВ=ВС=EF = FK
Таким образом мы доказали, что АВ = FK
Для доказательства равенства двух отрезков использовали следующие :
Рассматривали эти отрезки как стороны двух треугольников, и доказывали, что эти треугольники равны. Рассматривали эти отрезки как стороны одного треугольника, и доказывали, что этот треугольник равнобедренный.