1. 4) такого тр-ка не существует, потому-что 5+9<15, а с таким отношением тр-ник построить нельзя. 2. Пусть боковые стороны будут a=х и b=х-3. Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние: х²-10²=(х-3)²-5², х²-100=х²-6х+9-25, х=14, а=14 см, b=14-3=11 см, c=5+10=15 cм. Р=14+11+15=40 см. ответ: б) 40 см. 3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3. АВ=4√3/√3=4 см. Периметр ромба: Р=4АВ=16 см. ответ: а) 16 см.
Искомое уравнение прямой - это по сути уравнение прямой по направляющему вектору и точке на прямой. В уравнении, вида: (x - x1)/a = (y-y1)/b = (z - z1)/c Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая. В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3) Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) . Теперь вспомним еще один вид уравнения прямой: Ax + By + Cz + D = 0 В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение: 2x - y + 3z + D = 0 Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим: 2*2 - 3 + 3 + D = 0 4 + D = 0 D= -4 ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0
2. Пусть боковые стороны будут a=х и b=х-3.
Так как высота делит тр-ник на два прямоугольных тр-ка и она для них общая, то по т. Пифагора можно записать ур-ние:
х²-10²=(х-3)²-5²,
х²-100=х²-6х+9-25,
х=14,
а=14 см, b=14-3=11 см, c=5+10=15 cм.
Р=14+11+15=40 см.
ответ: б) 40 см.
3. АВСД - ромб, ∠А=60°, АВ=АД, значит АВД - правильный тр-ник. В нём АО - высота. АО=АВ√3/2, АС=2АО=АВ√3 ⇒ АВ=АС/√3.
АВ=4√3/√3=4 см.
Периметр ромба: Р=4АВ=16 см.
ответ: а) 16 см.
(x - x1)/a = (y-y1)/b = (z - z1)/c
Коэффициенты а, b, с - это координаты направляющего вектора, а числа x1, y1, z1 - это координаты точки, через которую проходит прямая.
В данной задаче направляющий вектор является нормальным вектором к заданной прямой: s(2, -1, 3)
Таким образом, мы знаем координаты вектора, перпендикулярного искомой прямой (перпендикуляра) .
Теперь вспомним еще один вид уравнения прямой:
Ax + By + Cz + D = 0
В этом уравнении коэффициенты A, B, C -это координаты нормального вектора, т. е. вектора перпендикулярного этой прямой. Но ведь мы уже знаем координаты перпендикулярного вектора! ! То есть, мы знаем почти все уравнение:
2x - y + 3z + D = 0
Однако надо найти коэффициент D. А это сделать очень просто: дело в том, что точка А (2,3,1) по условию лежит на данной прямой. Так что если подставить её координаты в уравнение прямой, уравнение обратится в тождество. Подставим:
2*2 - 3 + 3 + D = 0
4 + D = 0
D= -4
ответ: искомое уравнение перпендикуляра: 2х - у + 3z - 4 = 0