В треугольнике АВС угол В равен 120°. Биссектрисы внешних углов при вершинах А и С пересекаются в точке J. Докажите что отрезок ВJ равен периметру треугольника АВС
По определению хорда МР и диаметр КЕ - отрезки, соединяющие точки окружности. Следовательно, они могут образовать искомый угол только пересекаясь внутри окружности, имея одну общую точку, например, Н. КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°. ответ: 127°
Сначала строишь отрезки a и b. Потом с циркуля и линейки строишь: 1) Отрезок, равный 2b. 2) Прямоугольный равнобедренный треугольник с катетами, равными а. 3) Отрезок 2a. 4) Прямоугольный треугольник с катетами, равными 2a и a√2 (отрезок a√2 - это гипотенуза равнобедренного прямоугольного треугольника с катетами, равными а). 5) Прямоугольный треугольник с катетами, равными 2b и a√6 (отрезок a√6 - гипотенуза второго прямоугольного треугольника). 6) Гипотенуза третьего прямоугольного треугольника равна длине заданного отрезка x. Всё построение строится на теореме Пифагора.
КЕ - диаметр, значит дуга КРЕ=180°. Дуга КРЕ - это сумма дуг КР и РЕ, причем дуга РЕ=0,8*КР (дано). Тогда КР+РЕ=1,8*КР=180°. Отсюда КР=100°, а РЕ=80°. Вписанный угол КЕМ равен половине градусной меры дуги МК, на которую он опирается, то есть <KЕM=13°. Вписанный угол ЕМР, опирающийся на дугу РЕ, равен 40°. Тогда в треугольнике НМЕ (Н - точка пересечения хорды и диаметра), угол МНЕ (искомый угол) равен 180°-13°-40°=127°.
ответ: 127°
Потом с циркуля и линейки строишь:
1) Отрезок, равный 2b.
2) Прямоугольный равнобедренный треугольник с катетами, равными а.
3) Отрезок 2a.
4) Прямоугольный треугольник с катетами, равными 2a и a√2 (отрезок a√2 - это гипотенуза равнобедренного прямоугольного треугольника с катетами, равными а).
5) Прямоугольный треугольник с катетами, равными 2b и a√6 (отрезок a√6 - гипотенуза второго прямоугольного треугольника).
6) Гипотенуза третьего прямоугольного треугольника равна длине заданного отрезка x.
Всё построение строится на теореме Пифагора.