Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).
1. Вершин получилось 5.
2. Периметр равен 45 см.
Объяснение:
1.
Так как стороны BC и DE равны и были соединены между собой, то две вершины треугольника были как бы поглощены двумя вершинами четырехугольника, то есть количество вершин будет 4 + 3 - 2, где первое слагаемое - количество вершин четырехугольника, второе - кол-во вершин треугольника и третье вычитаемое - количество пар вершин, которые соединились между собой.
2.
Так как по равным между собой BC и DE мы соединили две фигуры, то данный получившийся отрезок не будет относится к периметру получившегося многоугольника. Оставшиеся стороны узнаем, прибавляя по 2, 3, 4, 5, 6 к числу 5, так как BC = DE. Каждая сумма будет означать длину стороны многоугольника. Складываем получившиеся суммы и получаем периметр получившегося многоугольника.
Рисунок - во вложении.
Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то
для EB=AB-AE и для AF=AB-BF следует, что EB=AF.
Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.
Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).
Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).