В треугольнике MNK MNK из вершины NN проведена высота NS NS так, что точка S S принадлежит отрезку NKNK, \angle MNS = \angle NKS∠MNS=∠NKS. Найди сторону MNMN, если НУЖЕН ТОЛЬКО ОТВЕТ
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
9 м.
Объяснение:
Расстояние от крыши дома до зёрен и от фонаря до зерен представляет собой гипотенузы прямоугольных треугольников АВС и КМС, как показано на рисунке. Если голуби при одинаковой скорости подлетели к корму одновременно, значит, эти гипотенузы равны, ВС=СК.
АВ - стена дома, МК - фонарь. АВ=12 м, МК=9 м.
Пусть искомое расстояние от дома до зерен АС=х м, тогда расстояние от основания столба до зерен СМ=21-х м.
По теореме Пифагора имеем равенство
ВС²=12²+х², а СК²=9²+(21-х)²
Поскольку ВС=СК, равенство принимает вид
12²+х²=9²+(21-х)²
144+х²=81+441-42х+х²
42х=378
х=9.
Расстояние от дома до зёрен 9 м.
Объяснение:
Сумму внутренних углов выпуклого n-угольника можно вычислить по формуле:
S=180\textdegree(n-2)S=180\textdegree(n−2)
1. Сумма всех внутренних углов выпуклого правильного многоугольника равна 1060°:
\begin{gathered}1060^\circ=180^\circ(n-2)\ \ \ \ |:180^\circn-2=5\dfrac89;\ \ \ \ \ n=7\dfrac89\end{gathered}
1060
∘
=180
∘
(n−2) ∣:180
∘
n−2=5
9
8
; n=7
9
8
Так как количество вершин многоугольника не может быть числом дробным, то такой многоугольник не существует, число сторон 0.
2. Сумма всех внутренних углов выпуклого правильного многоугольника равна 900°:
\begin{gathered}900^\circ=180^\circ(n-2)\ \ \ \ |:180^\circn-2=5;\ \ \ \ \boldsymbol{n=7}\end{gathered}
900
∘
=180
∘
(n−2) ∣:180
∘
n−2=5; n=7
Многоугольник существует, число сторон 7.