В прямоугольном треугольнике ABC угол C =90° угол B=30°, AB=12 см, CD- высота.
а)Докажите, что треугольник ACD подобен треугольнику ABC, найдите отношение их площадей б)отрезки, на которые биссектриса угла A делит катет BC
Объяснение:
а)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Значит ΔАСД подобен ΔАВС:, т.к. ∠Д=∠С=90 , ∠А=∠общий. Найдем коэффициент подобия к=АС/АВ, к=6/12, к=1/2.
Отношение площадей подобных треугольников равно квадрату коэффициенту подобия: S(АСД):S(АВС)=к² , S(АСД):S(АВС)=1/4 .
б)
Найдем стороны в ΔАВС :
СА=1/2 АВ по св.угла 30, СА=6.
СВ²=АВ²-СА² по т. Пифагора, СВ²=144-36=108, СВ=√108=6√3.
Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам:
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см
Задача:
В прямоугольном треугольнике ABC угол C =90° угол B=30°, AB=12 см, CD- высота.
а)Докажите, что треугольник ACD подобен треугольнику ABC, найдите отношение их площадей б)отрезки, на которые биссектриса угла A делит катет BC
Объяснение:
а)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. Значит ΔАСД подобен ΔАВС:, т.к. ∠Д=∠С=90 , ∠А=∠общий. Найдем коэффициент подобия к=АС/АВ, к=6/12, к=1/2.
Отношение площадей подобных треугольников равно квадрату коэффициенту подобия: S(АСД):S(АВС)=к² , S(АСД):S(АВС)=1/4 .
б)
Найдем стороны в ΔАВС :
СА=1/2 АВ по св.угла 30, СА=6.
СВ²=АВ²-СА² по т. Пифагора, СВ²=144-36=108, СВ=√108=6√3.
Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам:
СЕ:СА=ВЕ:ВА .
Пусть СЕ=х, ВЕ=6√3-х
х:6 =(6√3-х):12
6√3-х=2х
6√3=3х
х=2√3 т.е СЕ=2√3, ВЕ=6√3-2√3=4√3
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см