В треугольнике OKB M-середина ОК,Н- середина ВО. Через точку О проведен отрезок ОА до пересечения с продолжением стороны КВ в некоторой точке А. Продолжение прямой МН пересекает отрезок ОА в точке Т. Найти отношение длин отрезков ОТ и АТ.
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
обозначим точку пересечения секущей с m буквой о, а биссектрису большего угла буквой n.
оn делит его на два равных угла, и половина его с острым углом составляет
94 градуса.
отсюда вторая половина ( половина закрашенного розовым цветом угла) равна 180 - 94=86 градусов.
весь тупой угол равен 86*2=172 градуса.
с острым углом он составляет развернутый угол и поэтому
острый угол равен 8 градусов.
так как прямые m и n параллельны, секущая со второй прямой образует углы той же градусной меры.
т.е. тупые углы равны 172 градуса, острые - 8 градусов.