AC лежит в плоскости основания, ребро СС1 прямоугольного параллелепипеда перпендикулярно плоскости основания. Треугольник ACC1 - прямоугольный с углом 30°. AC=AC1/2 =√3 (катет против угла 30° равен половине гипотенузы) CC1=AC√3 =3 (катет против угла 60° равен другому катету, умноженному на √3)
ответ: 192 см
Объяснение:
ВН - высота равнобедренного треугольника, проведенная к основанию, значит ВН - медиана,
АН = НС = ВН/2 = 15 см
ΔАВН: ∠АНВ = 90°,
по теореме Пифагора
АВ = √(АН² + ВН²) = √(15² + 8²) = √(225 + 64) = √289 = 17 см
Pabc = АВ + АС + ВС = 17 + 30 + 17 = 64 см
__________________________________
Углы при основании равнобедренного треугольника равны, тогда
∠А = ∠С = (180° - ∠В)/2
∠А₁ = ∠С₁ = (180° - ∠В₁)/2
По условию ∠В = ∠В₁, значит и ∠А = ∠А₁, ⇒
ΔАВС ~ ΔА₁В₁С₁ по двум углам.
см
AC=AC1/2 =√3 (катет против угла 30° равен половине гипотенузы)
CC1=AC√3 =3 (катет против угла 60° равен другому катету, умноженному на √3)
Грани прямоугольного параллелепипеда - прямоугольники.
P(ABCD) =2(AB+BC) =2√5 <=> AB+BC=√5
AB^2 +BC^2 =AC^2 <=>
(AB+BC)^2 =AC^2 +2AB*BC <=>
AB*BC =(5-3)/2 =1
Объем прямоугольного параллелепипеда равен призведению трех его измерений:
V=AB*BC*CC1 =3