Стержень - это цилиндр высотой Н и радиусом R. Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d: D=d=a√2=12√2. Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH. Объем прям.параллелепипеда Vп=a²H=144H. Объем проделанного отверстия радиусом r=6/2=3: Vо=πr²H=9πH. Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16) Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Сечение пирамиды плоскостью, параллельной ее основанию (перпендикулярной высоте) есть многоугольник, подобный основанию пирамиды, причем коэффициент подобия этих многоугольников равен отношению их расстояний от вершины пирамиды. Площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды. S/S₁=(H/H₁)² Т.к. боковое ребро длиной L поделено в соотношении L₁/L₂=2/3, значит L/L₁=5/2=2,5, тогда и расстояние (высота пирамиды) H/H₁=2,5. Площадь сечения S₁=S/2.5²=50/6.25=8
Квадратные гайки - это прямоугольный параллелепипед высотой Н и основанием - квадрат со стороной а=12 см. Чтобы был минимальный расход материала, нужно прямоугольный параллелепипед вписать в цилиндр. Значит диаметр стержня D будет равен диагонали квадрата d:
D=d=a√2=12√2.
Объем стержня Vс=πR²H=πD²H/4=π*288H/4=72πH.
Объем прям.параллелепипеда Vп=a²H=144H.
Объем проделанного отверстия радиусом r=6/2=3:
Vо=πr²H=9πH.
Найдем отходы V=Vc-Vп+Vo=72πН-144Н+9πН=9Н(9π-16)
Процент отходов от объема %=V*100/Vc=9Н(9π-16)*100/72πН=12,5(9π-16)/π=112,5-200/π≈112,5-63,69=48,81%
Площади сечений, параллельных основанию пирамиды, относятся как квадраты их расстояний от вершины пирамиды.
S/S₁=(H/H₁)²
Т.к. боковое ребро длиной L поделено в соотношении L₁/L₂=2/3, значит L/L₁=5/2=2,5, тогда и расстояние (высота пирамиды) H/H₁=2,5.
Площадь сечения S₁=S/2.5²=50/6.25=8