h = ? (см), в 3 раза меньше стороны, к которой она опущена.
Найти:
h; a; b.
Пусть x (см) равна высота, тогда сторона, которой проведена эта высота будет равна (3 · x) (см). Площадь данного параллелограмма равна 27 (см²) (по условию задачи).
Исходя из данных условий, составим уравнение, выделяя три этапа математического моделирования.
Этап №I. Составление математической модели:
3x · x = 27
Этап №II. Работа с математической моделью:
3x · x = 27
3x² = 27
x² = 27 : 3
x² = 9
x = ± √9
Этап №III. ответ математической модели:
x = ± 3
Итак, уравнение показало два ответа: x₁ = 3; x₂ = - 3. Так как ВЫСОТА НЕ МОЖЕТ БЫТЬ ОТРИЦАТЕЛЬНЫМ ЧИСЛОМ, то h = 3 (см).
Поскольку в уравнении сторона, на которую была опущена высота была равна (3 · x) (см), то подставим вместо переменной "x" найденную высоту и найдём второй ответ на вопрос задачи: a = 3 · x = 3 · 3 = 3² = 9 (см).
Осталось только найти третий ответ на вопрос задачи - чему равна сторона "b"? По формуле периметр включает в себя и сторону "a", и сторону "b"! Она выглядит так: P = 2 · (a + b). А значит, мы можем снова составить уравнение, выделяя три этапа математического моделирования.
Пусть b (см) равняется вторая сторона параллелограмма.
Этап №I. Составление математической модели:
2 · (9 + b) = 28
Этап №II. Работа с математической моделью:
2 · (9 + x) = 28
2 · 9 + 2 · b = 28
18 + 2b = 28
2b = 28 - 18
2b = 10
b = 10 : 2
Этап №III. ответ математической модели:
b = 5
Т.к. ответ уравнения число положительное, то мы получили третий ответ на вопрос задачи.
ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ:
Дано:
S = 27 (см²);
P = 28 (см);
h = ? (см), в 3 раза меньше стороны, к которой она опущена.
Найти:
h; a; b.
Пусть x (см) равна высота, тогда сторона, которой проведена эта высота будет равна (3 · x) (см). Площадь данного параллелограмма равна 27 (см²) (по условию задачи).
Исходя из данных условий, составим уравнение, выделяя три этапа математического моделирования.
Этап №I. Составление математической модели:
3x · x = 27
Этап №II. Работа с математической моделью:
3x · x = 27
3x² = 27
x² = 27 : 3
x² = 9
x = ± √9
Этап №III. ответ математической модели:
x = ± 3
Итак, уравнение показало два ответа: x₁ = 3; x₂ = - 3. Так как ВЫСОТА НЕ МОЖЕТ БЫТЬ ОТРИЦАТЕЛЬНЫМ ЧИСЛОМ, то h = 3 (см).
Поскольку в уравнении сторона, на которую была опущена высота была равна (3 · x) (см), то подставим вместо переменной "x" найденную высоту и найдём второй ответ на вопрос задачи: a = 3 · x = 3 · 3 = 3² = 9 (см).
Осталось только найти третий ответ на вопрос задачи - чему равна сторона "b"? По формуле периметр включает в себя и сторону "a", и сторону "b"! Она выглядит так: P = 2 · (a + b). А значит, мы можем снова составить уравнение, выделяя три этапа математического моделирования.
Пусть b (см) равняется вторая сторона параллелограмма.
Этап №I. Составление математической модели:
2 · (9 + b) = 28
Этап №II. Работа с математической моделью:
2 · (9 + x) = 28
2 · 9 + 2 · b = 28
18 + 2b = 28
2b = 28 - 18
2b = 10
b = 10 : 2
Этап №III. ответ математической модели:
b = 5
Т.к. ответ уравнения число положительное, то мы получили третий ответ на вопрос задачи.
ответ: h = 3 (см); a = 9 (см); b = 5 (см).
ответ:Геометрический смысл φ ясен из рис. 125. Отрезок прямой разделен на два отрезка А и В, которые, как говорят, образуют "золотое сечение" отрезка А + В: длина всего отрезка (А + В) находится в таком же отношении к длине отрезка А, как и длина отрезка А к длине отрезка В. Отношение каждой пары отрезков и равно числу φ. Если длина отрезка В равна 1, то значение φ нетрудно вычислить из уравнения
которое можно записать в виде обычного квадратного уравнения А2 - А - 1 = 0. Положительный корень этого уравнения равен
Это число одновременно выражает длину отрезка А и значение величины φ. Его десятичное разложение имеет вид 1,61803398... Если за единицу принять длину А, то длина В будет выражаться величиной, обратной φ, то есть 1/φ. Любопытно, что 1/φ = 0,61803398... Число φ - единственное положительное число, которое переходит в обратное ему при вычитании единицы.
Подобно числу π, φ можно представить в виде суммы бесконечного ряда многими Предельная простота следующих двух примеров еще раз подчеркивает фундаментальный характер φ: