В трикутнику АВС проведені висоти ВН і СК, які перетинаються в точці М. Доведіть, що навколо чотирикутника АКМН можна описати колоВ трикутнику АВС проведені висоти ВН і СК, які перетинаються в точці М. Доведіть, що навколо чотирикутника АКМН можна описати коло
Я отвечу только на второе
Доказательства в объяснении.
Объяснение:
1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а вписанный угол равен половине градусной меры дуги, на которую он опирается.
Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.
2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС. ∠АСВ = ∠КАВ (доказано выше).
По сумме внутренних углов треугольников АВС и КАВ имеем:
∠АВС = 180 - (∠АСВ + ∠ВАС)
∠АКВ = 180 - (∠КАВ + ∠АВК) =>
∠АВС = ∠АКВ. => ∠АВК = ∠АКВ =>
Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.
3. Треугольники АСВ и КАВ подобны по 2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).
Площади подобных треугольников относятся как квадрат коэффициента подобия.
Sabc/Sabk = k² = АС²/АВ².
По теореме косинусов в тр-ке АВС найдем:
АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).
Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>
к² зависит только от угла α, то есть
отношение площадей зависит только от величины угла АСВ.
Что и требовалось доказать.
40
Объяснение:
Угол EKC = 180 - CKB = 180 - 115 = 65. Как угол смежный углу CKB
Угол KEB = 180 - ACE - EKC = 180 - 90 - 65 = 25. Рассматривался треугольник EKC
Треугольник CBK - равнобедренный, т.к. EC = CB
CBK = KEC = 25
KCB = 180 - CKB - KBC = 180 - 115 - 25 = 40 Рассматривался треугольник CBK
BCM = 90 - KCB = 90 - 40 = 50
CM = EC = CB (т.к. AС - биссектриса равнобедренного треугольника => высота и медиана)
Треугольник CBM равнобедренный
CBM = CMB = (180 - BCM) / 2 = (180 - 50) / 2 = 65
KBA = 180 - CBM - EBC = 180 - 65 - 25 = 90
KAB = 180 - AKB - KBA = 180 - 65 - 90 = 25
EAC = KAB = 25, т.к. AC биссектриса
BEA = 180 - EKA - EAK = 180 - 115 - 25 = 40