Условие задачи некорректно. Иногда задачи с таким условием составляются специально. Доказательство ниже.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD, C1D⊥DA, проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD- прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – гипотенуза В1D
треугольника В1АD
B1D=AD:cos60°=6:1/2=12
———————
Мы получили проекцию наклонной ВD, которая имеет большую длину, чем сама наклонная. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может. Задача с таким же условием есть от 2015 г, и так именно задумана её составителями.
Но если величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
Или угол В1DB=60° -тоже получится допустимый результат.
А5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет вектор:
a) b;
B)
г) п.
a
+
m
А6. Отрезок МN является средней линией треугольника ABC. Число k, для которого vec AB =k* vec MA , равно:
а) 2,
6) -2;
1 2 ;
r)- 1 2 .
A7. ABCD параллелограмм, O - roq пересечения его диагоналей. Тогда верным будет равенство:
a) vec AO - vec OD = vec AD
6)
vec AO - vec BO = vec AD
;
B) vec AB + vec BO = vec AO ;
г) vec AB + vec BO = vec AC .
. А8. В четырехугольнике АBCD vec AB = vec DC точка K-* cepe дина AD. Прямая СК пересекает прямую ВА в точке N. Среди указанных пар векторов не являются коллинеар ными векторы:
a) vec AD u vec NK
б) vec AK u vec BC ;
в) vec AK u vec DA ;
г) vec BN H vec DC
B
M
C
A
N
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Все ответы
Условие задачи некорректно. Иногда задачи с таким условием составляются специально. Доказательство ниже.
———
ВВ1 перпендикулярен плоскости альфа, следовательно, этот отрезок перпендикулярен любой прямой, проходящей в этой плоскости через В1.
BD=6√2
∆ ВАD- прямоугольный равнобедренный. Его острые углы равны 45°⇒
AD=BD•sin45°=6
По условию AD лежит в плоскости α.
Поэтому по т. о 3-х перпендикулярах В1А⊥AD, C1D⊥DA, проекция квадрата ABCD на эту плоскость – прямоугольник АВ1С1D.
Угол В1АD- прямой.
Угол В1DА=60°(дано)
Проекция диагонали ВD на плоскость α – гипотенуза В1D
треугольника В1АD
B1D=AD:cos60°=6:1/2=12
———————
Мы получили проекцию наклонной ВD, которая имеет большую длину, чем сама наклонная. Т.е. в прямоугольном ∆ ВВ1D длина катета B1D больше длины гипотенузы BD, чего быть не может. Задача с таким же условием есть от 2015 г, и так именно задумана её составителями.
Но если величина угла В1DА равна 30°,то проекция ВD на плоскост α равна AD:cos30°=4√3.
Или угол В1DB=60° -тоже получится допустимый результат.
a) b;
B)
г) п.
a
+
m
А6. Отрезок МN является средней линией треугольника ABC. Число k, для которого vec AB =k* vec MA , равно:
а) 2,
6) -2;
1 2 ;
r)- 1 2 .
A7. ABCD параллелограмм, O - roq пересечения его диагоналей. Тогда верным будет равенство:
a) vec AO - vec OD = vec AD
6)
vec AO - vec BO = vec AD
;
B) vec AB + vec BO = vec AO ;
г) vec AB + vec BO = vec AC .
. А8. В четырехугольнике АBCD vec AB = vec DC точка K-* cepe дина AD. Прямая СК пересекает прямую ВА в точке N. Среди указанных пар векторов не являются коллинеар ными векторы:
a) vec AD u vec NK
б) vec AK u vec BC ;
в) vec AK u vec DA ;
г) vec BN H vec DC
B
M
C
A
N
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Решите это пжА5. На рисунке изображены векторы. Вектор, равный век тору 3 overline a , будет векто
Все ответы