Вариант 1 Обязательная часть. 1. На рисунке 10 определите угол А треугольника ABC. 2. В треугольнике ком определите величину внешнего угла при вершине м (рис. 1). В 309 100° 50° Sc 40° А A K M M Рис. 1 Рис. 10
Так как у ромба все стороны равны, то треугольник всд равнобедренный, значит, углы двс и вдс равны, и равны 30°диагонали ромба пересекаются под прямым угломто если рассмотреть треугольник осд, то со лежит напротив угла 30°, значит, катет ос равен половине гипотенузы, то есть 1/2 дса ос половина диагонализначит, ас=сди так как ад=сд(стороны ромба) то и ас=дс=адзначит, периметр 51: 3=17 см (ас, дс, ад) 17 см малая диагональос значит =8,5 смпо теореме пифагора можно найти додо=√(дс^2-ос^2)=√(17*17-8,5*8,5)=√(289-72,25)=√216,75значит, вся диагональ вд=2√216,75квадрат диагонали =4*216,75=867
Найдем площадь треугольника PKT:
p_{\triangle PKT} = \frac{PK+KT+PT}{2}=\frac{17+65+(30+50)}{2}=\frac{82+80}{2}=\frac{162}{2}=81 \ cmp
△PKT
=
2
PK+KT+PT
=
2
17+65+(30+50)
=
2
82+80
=
2
162
=81 cm
\begin{gathered}S_{\triangle PKT} = \sqrt{p_{\triangle PKT}\cdot (p_{\triangle PKT}\cdot PK)\cdot(p_{\triangle PKT}-KT)\cdot(p_{\triangle PKT}-PT)}= \\ \\ =\sqrt{81\cdot(81-17)\cdot(81-65)\cdot(81-80)}=\sqrt{81\cdot 64\cdot16\cdot 1}=9\cdot8\cdot 4=288 \ cm^2\end{gathered}
S
△PKT
=
p
△PKT
⋅(p
△PKT
⋅PK)⋅(p
△PKT
−KT)⋅(p
△PKT
−PT)
=
=
81⋅(81−17)⋅(81−65)⋅(81−80)
=
81⋅64⋅16⋅1
=9⋅8⋅4=288 cm
2
H=\frac{2S_{\triangle PKT}}{PT}=\frac{2\cdot 288}{80}=\frac{288}{40}=\frac{144}{20}=\frac{72}{10}=7,2 \ cmH=
PT
2S
△PKT
=
80
2⋅288
=
40
288
=
20
144
=
10
72
=7,2 cm
\begin{gathered}S_{\triangle PKC}=\frac{1}{2}\cdot H\cdot PC=\frac{1}{2}\cdot 7,2\cdot 30=\frac{1}{2}\cdot \frac{72}{10}\cdot 30=36\cdot 3 =108 \ cm^2 \\ \\ S_{\triangle KCT}=\frac{1}{2}\cdot H\cdot CT=\frac{1}{2}\cdot 7,2\cdot 50=\frac{1}{2}\cdot \frac{72}{10}\cdot 50=36\cdot 5=180 \ cm^2 \\ \\\end{gathered}
S
△PKC
=
2
1
⋅H⋅PC=
2
1
⋅7,2⋅30=
2
1
⋅
10
72
⋅30=36⋅3=108 cm
2
S
△KCT
=
2
1
⋅H⋅CT=
2
1
⋅7,2⋅50=
2
1
⋅
10
72
⋅50=36⋅5=180 cm
2