В
Все
М
Математика
А
Английский язык
Х
Химия
Э
Экономика
П
Право
И
Информатика
У
Українська мова
Қ
Қазақ тiлi
О
ОБЖ
Н
Немецкий язык
Б
Беларуская мова
У
Українська література
М
Музыка
П
Психология
А
Алгебра
Л
Литература
Б
Биология
М
МХК
О
Окружающий мир
О
Обществознание
И
История
Г
Геометрия
Ф
Французский язык
Ф
Физика
Д
Другие предметы
Р
Русский язык
Г
География
zhuniorneimar486
zhuniorneimar486
21.02.2020 06:05 •  Геометрия

Вариант 33 1 Решить треугольник (найти его неизвестные элементы): А) a=13, a=45°, В=60° Б) а=22, b=23, y=45° B) a=14, b=18, c=6.

Показать ответ
Ответ:
asanali2288
asanali2288
21.03.2023 02:34

Шла Саша по шоссе

Предлагаю Вашему вниманию серию рассказов о скороговорках в русском языке.

Серия создана для тех, кто начинает изучать русский язык. Слова и выражения скороговорок будут объясняться.

Скороговорка - это фраза, которую нужно сказать быстро (или скоро). Это значит, что скороговорку нужно скоро говорить. Но скоро или быстро скороговорку сказать обычно сложно.

Скороговорки используются для улучшения или тренировки дикции. Часто актёры используют скороговорки перед выходом на сцену.

Итак, начнём.

«Шла Саша по шоссе и сосала сушку»

Теперь скажем быстрее.

«Шла Саша по шоссе и сосала сушку»

Как видим, слова подобраны так, чтобы часто чередовались звуки «с» и «ш».

Разберём некоторые слова подробнее.

Саша - это упрощённая версия имён Александр или Александра. Так называют мальчиков с именем Александр или девочек с именем Александра дома, в детском саду, в школе, в кругу друзей. Что общего между словами «Саша» и «Александр»? На первый взгляд они кажутся совсем непохожими. Имя Александр можно сказать более ласково: «Алексаша». Такие версии этого имени можно встретить в русской литературе у авторов, которые жили ещё во времена царской России. Сейчас вместо слова «Алексаша» обычно используется более короткое «Саша».

Но про кого говорит нам скороговорка? Про мальчика или про девочку? ответ дают два глагола: «шла» и «сосала». По ним видно, что речь идёт о девочке.

Шоссе - это обычно скоростная дорога, выезд из города. Дорога в направлении какого-то другого города может называться так: Московское шоссе, Минское шоссе, Киевское шоссе и т.д. Так, здесь перечислены дороги в направлении таких городов как Москва, Минск, Киев. Город может расти, и вдоль бывшей загородной дороги могут появиться дома и новые жилые районы. Так шоссе становится улицей или но название может сохраниться. Например, Варшавское шоссе.

Сушка - это небольшие съедобные колечки. Обычно они очень сухие, от чего и получили своё название. Когда Саша шла по шоссе, она хотела скушать сушку. Но сушка была очень сухая и твёрдая. Поэтому Саша положила сушку в рот. Со временем сушка во рту станет мягче. Саше будет легче съесть сушку.

«Шла Саша по шоссе и сосала сушку»

To hear audio for this text, and to learn the vocabulary sign up for a free LingQ account.

Open this lesson on LingQ

Want to learn a language?

Learn from this text and thousands like it on LingQ.

A vast library of audio lessons, all with matching text

Revolutionary learning tools

A global, interactive learning community.

Language learning online @ LingQ

LingQ Logo

Get our App at:

Learning Language App iOS

Androind App Language

© 2002-2020 The Linguist Institute, Inc. All rights reserved. 200-2232 Marine Drive, West Vancouver, BC, Canada V7V 1K4

Help | TOS | Privacy | Sitemap

We use cookies to help make LingQ

0,0(0 оценок)
Ответ:
Caesar228
Caesar228
26.07.2020 23:18

Объяснение:

Биссектриса угла В и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую АВ в точках М и К соответственно. Докажите, что отрезок МК равен и перпендикулярен диагонали прямоугольника.

2. В равнобедренном треугольнике АВС на боковой стороне ВС отмечена точка М так, что отрезок СМ равен высоте треугольника, проведенной к этой стороне, а на боковой стороне АВ отмечена точка К так, что угол КМС – прямой. Найдите угол АСК.

3. Из листа бумаги в клетку вырезали квадрат 2×2. Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

4. В трапеции ABCD: AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из Н на АС, проходит через середину BD.

5. Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника АВС, М – середина АВ. Окружности, описанные около треугольников AMA1 и BMB1 пересекают прямые АС и ВС в точках К и L соответственно. Докажите, что К, М и L лежат на одной прямой.

6. Один треугольник лежит внутри другого. Докажите, что хотя бы одна из двух наименьших сторон (из шести) является стороной внутреннего треугольника.

10–11 класс

1. AD и BE – высоты треугольника АВС. Оказалось, что точка C', симметричная вершине С относительно середины отрезка DE, лежит на стороне AB. Докажите, что АВ – касательная к окружности, описанной около треугольника DEC'.

2. Прямая а пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от а и не пересекающих a. Верно ли, что а перпендикулярна α?

3. Дана неравнобокая трапеция ABCD (AB||CD). Произвольная окружность, проходящая через точки А и В, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.

4. Докажите, что любой жесткий плоский треугольник T площади меньше четырёх можно просунуть сквозь треугольную дырку Q площади 3.

5. В выпуклом четырехугольнике ABCD: AC ⊥ BD, ∠BCA = 10°, ∠BDA = 20°, ∠BAC = 40°. Найдите ∠BDC. (ответ выразите в градусах.)

6. Пусть AA1, BB1 и CC1 – высоты неравнобедренного остроугольного треугольника АВС; окружности, описанные около треугольников АВС и A1B1C, вторично пересекаются в точке Р, Z – точка пересечения касательных к описанной окружности треугольника АВС, проведённых в точках А и В. Докажите, что прямые АР, ВС и ZC1 пересекаются в одной точке.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота