Из точки А, не лежащей на окружности, проведены к окружности касательная и секущая. Расстояние от А до точки касания 12 см. Расстояние от A до одной из точек пересечения секущей с окружностью 24 см. Найдите радиус окружности, если секущая удалена от центра на 12 см.
В сантиметрах
По теореме о касательной и секущей
AT^2 =AN*AM => 12^2 =24*AM => AM =144/24 =6
MN =AN-AM =24-6 =18
Расстояние от точки до прямой - длина перпендикуляра.
Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = и y = (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.
Объяснение:
Прямая АВ , проходящая через начало координат имеет вид у=кх
Найдем точки пересечения этой прямой и гипербол:
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ. Найдем ОА и ОВ по формулам расстояния между точками : ОА= = ,
ОB= = .
Тогда ОМ²= * = . Т.к ≥2 ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное 2 , а к1*к2=144, то ОМ²=2*√144=2*12=24.
===========================================
Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."
Формула расстояния между точками d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.
Из точки А, не лежащей на окружности, проведены к окружности касательная и секущая. Расстояние от А до точки касания 12 см. Расстояние от A до одной из точек пересечения секущей с окружностью 24 см. Найдите радиус окружности, если секущая удалена от центра на 12 см.
В сантиметрах
По теореме о касательной и секущей
AT^2 =AN*AM => 12^2 =24*AM => AM =144/24 =6
MN =AN-AM =24-6 =18
Расстояние от точки до прямой - длина перпендикуляра.
OH⊥AN, OH=12
Перпендикуляр из центра к хорде делит ее пополам.
MH =MN/2 =9
По теореме Пифагора
OM =√(OH^2 +MH^2) =15 (см)
Окружность, центр которой расположен в первой координатной четверти, касается оси Ox в точке M, пересекает две гиперболы y = и y = (k1, k2 > 0) в точках A и B таких, что прямая AB проходит через начало координат O. Известно, что k1 * k2 = 144. Найдите наименьшую возможную длину отрезка OM.В ответ запишите квадрат длины ОМ.
Объяснение:
Прямая АВ , проходящая через начало координат имеет вид у=кх
Найдем точки пересечения этой прямой и гипербол:
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
y = и у=кх → = кх , х²= ; x = ( т.к. точка пересечения в 1 четверти , то х>0 ). Тогда у= к* .
По свойство касательной и секущей проведенных из одной точки ОМ²=ОА*ОВ. Найдем ОА и ОВ по формулам расстояния между точками : ОА= = ,
ОB= = .
Тогда ОМ²= * = . Т.к ≥2 ,по следствию из неравенства о среднем арифметическом и среднем геометрическом , то принимает наименьшее значение равное 2 , а к1*к2=144, то ОМ²=2*√144=2*12=24.
===========================================
Свойство касательной и секущей проведенных из одной точки : "Если из точки к окружности проведены касательная и секущая, то квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью."
Формула расстояния между точками d=√( (х₁-х₂)²+(у₁-у₂)² ), где (х₁;у₁ ), (х₂;у₂ ) -координаты концов отрезка.