Висота прямой четырехугольной призмы равна h.Диагонали призмы образуют с плоскостью основания углы α и β,а угол между диагоналями основания равен ω.Найти объем призмы
Дано: Δ АВС ∠ВАС = 90⁰ АВ + АС = а АВ ∙ АС = в к - сторона квадрата, вписанного в ΔАВС ∠ВАС - общий Найти: к Решение. Площадь (S) ΔАВС = S₁ +S₂ +Sк; S = в/2; Sк = к²; S₁ = кх/2; S₂ = ку/2; S₁+S₂ = (к/2)(х+у) ; АВ+АС = а = х+к+к+у = 2к+(х+у); (х+у) = а - 2к; S₁+S₂ = (к/2)(х+у) = (к/2)(а-2к); в/2 =(к/2)(а-2к) + к²; в/2 = ак/2 – к²+к²; в/2 = ак/2; к = в/а ответ: Сторона квадрата, вписанного в прямоугольный треугольник равна произведению длин катетов, деленному на их сумму.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
∠ВАС = 90⁰
АВ + АС = а
АВ ∙ АС = в
к - сторона квадрата, вписанного в ΔАВС
∠ВАС - общий
Найти: к
Решение.
Площадь (S) ΔАВС = S₁ +S₂ +Sк; S = в/2; Sк = к²;
S₁ = кх/2; S₂ = ку/2; S₁+S₂ = (к/2)(х+у) ;
АВ+АС = а = х+к+к+у = 2к+(х+у); (х+у) = а - 2к;
S₁+S₂ = (к/2)(х+у) = (к/2)(а-2к);
в/2 =(к/2)(а-2к) + к²; в/2 = ак/2 – к²+к²; в/2 = ак/2;
к = в/а
ответ: Сторона квадрата, вписанного в прямоугольный треугольник равна произведению длин катетов, деленному на их сумму.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.